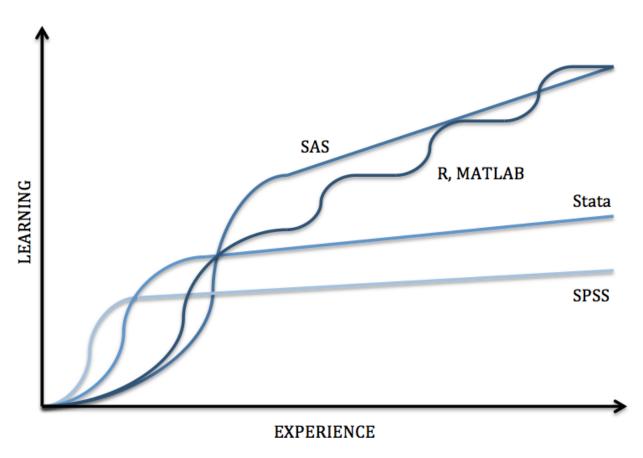
## Introduction to R

Adrian Rohit Dass
Institute of Health Policy, Management, and
Evaluation

Canadian Centre for Health Economics
University of Toronto

September 13<sup>th</sup>, 2024


### R for Health Economics

- A survey conducted to previous IHPME health economics students suggested the following research interests
  - Working with data
    - Common tasks: reading in data, creating new variables, data subsets, etc.
    - Example packages: base, tidyverse, data.table, etc.
  - Applied econometrics
    - Common tasks: descriptive analysis, regression analysis, etc.
    - Example packages: stats, plm, lmtest, sandwich, etc.
  - Economic Evaluation
    - Common tasks: model building (Markov, Microsim, etc.), sensitivity analysis, etc.
    - Example packages: base, stats, ggplot2, etc.

## Outline

- Why use R?
- R Basics
- R for Data Manipulation
  - Reading-in data, sub-setting, creating new variables, etc.
- R for Statistical Analysis
  - Descriptive and Regression Analysis
- Applied Example
- Other topics in R
  - Tidyverse
  - data.table
  - R Studio
  - R Markdown
- Applied Example 2
- R Resources

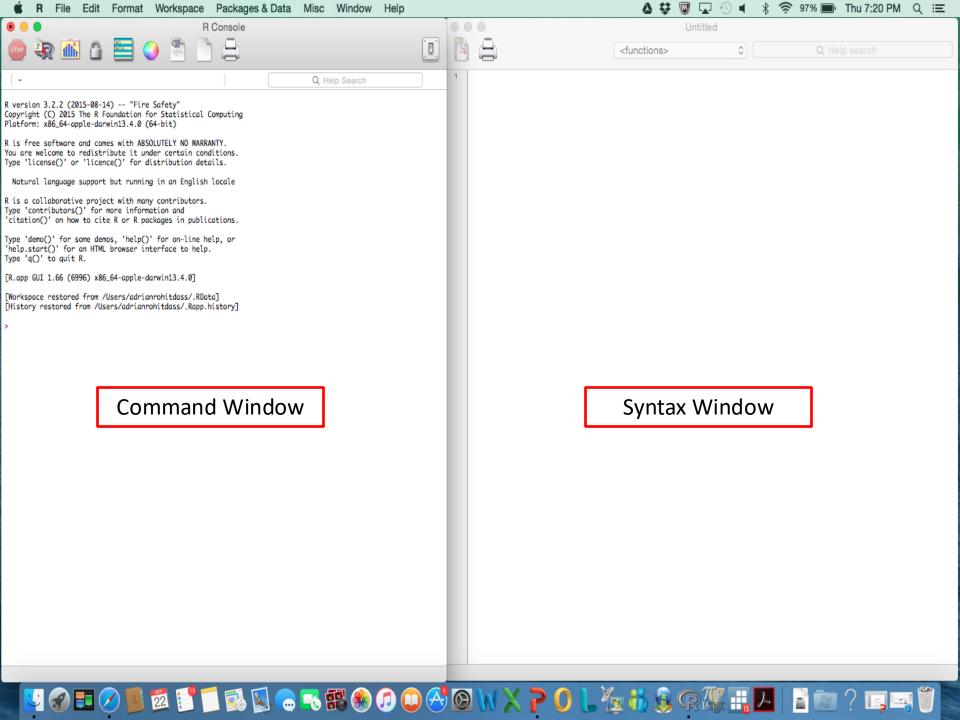
# Learning Curves of Various Software Packages



Source: https://sites.google.com/a/nyu.edu/statistical-software-guide/summary

# Summary of Various Statistical Software Packages

| Software | Interface*     | Learning<br>Curve | Data Manipulation | Statistical Analysis                 | Graphics  | Specialties                                                                     |
|----------|----------------|-------------------|-------------------|--------------------------------------|-----------|---------------------------------------------------------------------------------|
| SPSS     | Menus & Syntax | Gradual           | Moderate          | Moderate Scope<br>Low Versatility    | Good      | Custom Tables, ANOVA & Multivariate Analysis                                    |
| Stata    | Menus & Syntax | Moderate          | Strong            | Broad Scope<br>Medium Versatility    | Good      | Panel Data, Survey Data Analysis & Multiple Imputation                          |
| SAS      | Syntax         | Steep             | Very Strong       | Very Broad Scope<br>High Versatility | Very Good | Large Datasets, Reporting, Password Encryption & Components for Specific Fields |
| R        | Syntax         | Steep             | Very Strong       | Very Broad Scope<br>High Versatility | Excellent | Packages for Graphics, Web Scraping, Machine Learning & Predictive Modeling     |
| MATLAB   | Syntax         | Steep             | Very Strong       | Limited Scope<br>High Versatility    | Excellent | Simulations, Multidimensional Data, Image & Signal Processing                   |


\* The primary interface is bolded in the case of multiple interface types available.

Source: https://sites.google.com/a/nyu.edu/statistical-software-guide/summary

## Goals of Today's Talk

- Provide an overview of the use of R for data manipulation
  - By doing so, we can hopefully lower the learning curve of R, thereby allowing us to take advantage of its "very strong" data manipulation capabilities
- Provide an overview of the use of R for statistical analysis
  - This includes descriptive analysis (means, standard deviations, frequencies, etc.) as well as regression analysis
  - R contains a wide number of pre-canned routines that we can use to implement the method we'd like to use

## Part I R Basics



## Programming Language

- Programming language in R is object oriented
  - Roughly speaking, this means that data, variables, vectors, matrices, characters, arrays, etc. are treated as "objects" of a certain "class" that are created throughout the analysis and stored by name.
  - We then apply "methods" for certain "generic functions" to these objects
- Case sensitive (like most statistical software packages), so be careful

## Classes in R

- In R, every object has a class
  - For example, character variables are given the class of factor or character, whereas numeric variables are integer
- Classes determine how objects are handled by generic functions. For example:
  - the mean(x) function will work for integers but not for factors or characters - which generally makes sense for these types of variables

## Packages available (and loaded) in R by default

| Package   | Description                                                                                                              |
|-----------|--------------------------------------------------------------------------------------------------------------------------|
| base      | Base R functions (and datasets before R 2.0.0).                                                                          |
| compiler  | R byte code compiler (added in R 2.13.0).                                                                                |
| datasets  | Base R datasets (added in R 2.0.0).                                                                                      |
| grDevices | Graphics devices for base and grid graphics (added in R 2.0.0).                                                          |
| graphics  | R functions for base graphics.                                                                                           |
| grid      | A rewrite of the graphics layout capabilities, plus some support for interaction.                                        |
| methods   | Formally defined methods and classes for R objects, plus other programming tools, as described in the Green Book.        |
| parallel  | Support for parallel computation, including by forking and by sockets, and random-number generation (added in R 2.14.0). |
| splines   | Regression spline functions and classes.                                                                                 |
| stats     | R statistical functions.                                                                                                 |
| stats4    | Statistical functions using S4 classes.                                                                                  |
| tcltk     | Interface and language bindings to Tcl/Tk GUI elements.                                                                  |
| tools     | Tools for package development and administration.                                                                        |
| utils     | R utility functions.                                                                                                     |

Source: https://cran.r-project.org/doc/FAQ/R-FAQ.html

For database management, we usually won't need to load or install any additional packages, although we might need the "foreign" package (available in R by default, but not initially loaded) or "haven" (not available in R by default, but can install) if we're working with a dataset from another statistical program (SPSS, SAS, STATA, etc.)

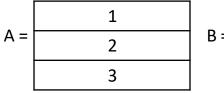
## Packages in R

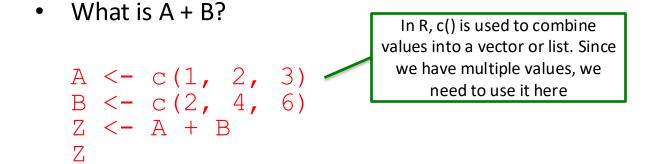
- Functions in R are stored in *packages* 
  - For example, the function for OLS (lm) is accessed via the "stats" package, which is available in R by default
  - Only when a package is *loaded* will its contents be available. The full list of packages is <u>not</u> loaded by default for computational efficiency
  - Some packages in R are not installed (and thus loaded) by default, meaning that we will have to install packages that we will need beforehand, and then load them later on

## Packages in R (Continued)

- To load a package, type library(packagename)
  - Ex: To load the foreign package, I would type library(foreign) before running any routines that require this package
- To install a package in R:
  - Type install.packages("packagename") in command window
  - For example, the package for panel data econometrics is plm in R. So, to install the plm package, I would type install.packages("plm").
    - Note that, although installed, a package will not be loaded by default (i.e. when opening R). So, you'll need library(package) at the top of your code (or at least sometime before the package is invoked).
  - Some packages will draw upon functions in other packages, so those packages will need to be installed as well. By using install.packages(""), it will automatically install dependent packages

## Some Basic Operations in R


- Q: If x = 5, and y = 10, and z = x + y, what is the value of z?
- Let's get R to do this for us:


```
x <- 5
y <- 10
z <- x + y
z
[1] 15
```

• In this example, we really only used the '+' operator, but note that '-', '/', '\*', '^', etc. work the way they usually do for scalar operations

## Some Basic Operations in R

Now suppose we created the following vectors:





[1] 3 6 9

• Note that with vectors, '+', '-', '/', '\*', '^' perform element-wise calculations when applied to vectors. So, vectors need to be the same length.

## Working with Matrices in R

A matrix with typical element (i,j) takes the following form:

| (1,1) | (1,2) | (1,3) |
|-------|-------|-------|
| (2,1) | (2,2) | (2,3) |
| (3,1) | (3,2) | (3,3) |

- Where i = row number and j = column number
- In R, the general formula for extracting elements (i.e. single entry, rows, columns) is as follows:
  - matrixname[row #, column #]
- If we leave the terms in the brackets blank (or leave out the whole bracket term) R will spit out the whole matrix

## Working with Matrices in R (Continued)

Example: Suppose we had the following matrix:

| 1 | 4 | 7 |
|---|---|---|
| 2 | 5 | 8 |
| 3 | 6 | 9 |

To create this matrix in R, type:

```
mat <- matrix(c(1, 2, 3, 4, 5, 6, 7, 8, 9), nrow=3, ncol=3)
```

Extract the element in row #2, column #3

```
mat[2,3]
[1] 8
```

Extract the second row

```
mat[2,]
[1] 2 5 8
```

Extract the last two columns

Since we require multiple columns, we need to use c() here

#### Working with Matrices in R (Continued)

• Example: Suppose now we had the following vector (called vec), with typical element 'i':

| 1 |
|---|
| 2 |
| 3 |

Extract the third element of the vector

```
vec[3]
[1] 3
```

• Suppose the 2<sup>nd</sup> element should be 5, not 2. How do we correct this value?

```
vec[2] <- 5
vec
[1] 1 5 3</pre>
```

#### But wait a minute...

- Q: If this is a tutorial on the use of R for database manipulation/statistical analysis, then why are we learning about vectors/matrices?
- A: The way we work with data in R is very similar/identical to how we work with vectors/matrices
  - This is different from other statistical software packages, which may be a contributing factor to the "high" learning curve in R
- The importance of vector/matrices operations will become more clear as we move

## But wait a minute...(Continued)

- Knowledge of vector/matrix operations may also be useful for the building of decision models for economic evaluation
- Markov
  - Alarid-Escudero, F., Krijkamp, E. M., Enns, E. A., Yang, A., Hunink, M. G., Pechlivanoglou, P., & Jalal, H. (2021). A Tutorial on time-dependent cohort state-transition models in R using a cost-effectiveness analysis example. arXiv preprint arXiv:2108.13552.
- Microsimulation
  - Krijkamp, E. M., Alarid-Escudero, F., Enns, E. A., Jalal, H. J.,
     Hunink, M. M., & Pechlivanoglou, P. (2018). Microsimulation
     modeling for health decision sciences using R: a tutorial. *Medical Decision Making*, 38(3), 400-422.

# Part II R for Data Manipulation

## Reading Data into R

#### What format is the data in?

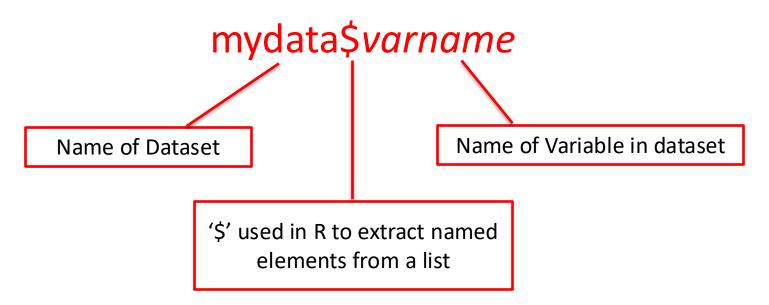
- Data from Comma Separated Values File (.csv)
  - Package: utils
  - Formula: read.csv(file, header = TRUE, sep = ",", quote = "\"", dec = ".", fill = TRUE, comment.char = "", ...)
- Data from Excel File (.xlsx)
  - Package: xlsx
  - Formula: read.xlsx(file, sheetIndex, sheetName=NULL, rowIndex=NULL, startRow=NULL, endRow=NULL, colIndex=NULL, as.data.frame=TRUE, header=TRUE, colClasses=NA, keepFormulas=FALSE, encoding="unknown", ...)
- Data from STATA (.dta)
  - Package: haven
  - Formula: read\_dta(file, encoding = NULL, col\_select = NULL, skip = 0, n\_max = Inf, .name\_repair = "unique")

Other Formats: See package "haven"

https://cran.r-project.org/web/packages/haven/haven.pdf

## Reading Data into R

#### **Examples:**


- CSV file with variable names at top
  - data <- read.csv("C:/Users/adrianrohitdass/Documents/R Tutorial/data.csv")
- CSV file with no variable names at top
  - data <- read.csv("C:/Users/adrianrohitdass/Documents/R Tutorial/data.csv", header=F)
- STATA data file
  - library(haven)
  - data <- read\_dta("C:/Users/adrianrohitdass/Documents/R Tutorial/data.dta")
- SAS
  - library(haven)
  - data <- read\_sas("C:/Users/adrianrohitdass/Documents/R Tutorial/data.sas7bdat")

## Comparison and Logical Operators

| Operator | Description                                       | Example                              |
|----------|---------------------------------------------------|--------------------------------------|
| =        | Assign a value                                    | x = 5                                |
| <-       | Assign a value                                    | x <- 5                               |
| ==       | Equal to                                          | sex ==1                              |
| !=       | Not equal to                                      | LHIN != 5                            |
| >        | Greater than                                      | income >5000                         |
| <        | Less than                                         | healthcost < 5000                    |
| >= or <= | Greater than or equal to<br>Less than or equal to | income >= 5000<br>healthcost <= 5000 |
| &        | And                                               | sex==1 & age>50                      |
| I        | Or                                                | LHIN==1   LHIN ==5                   |

## Referring to Variables in a Dataset

 Suppose I had data stored in "mydata" (i.e an object created to store the data read-in from a .csv by R). To refer to a specific variable in the dataset, I could type



## Creating a new variable/object

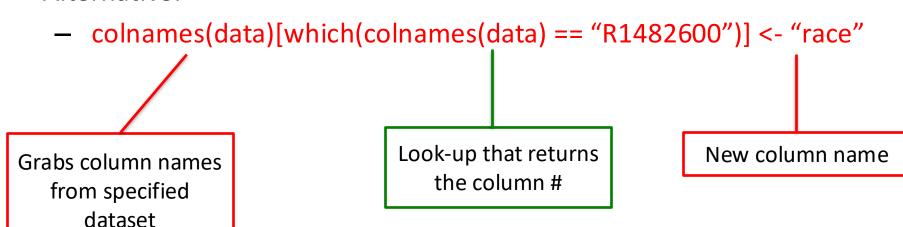
- No specific command to generate new variables (in contrast to STATA's "gen" and "egen" commands)
  - x <- 5 generates a 1x1 scalar called "x" that is equal to 5
  - data\$age <- year data\$dob creates a new variable "age" in the dataset "data" that is equal to the year the person's date of birth (let's say in years)</li>

## Looking at Data

- Display the first or last few entries of a dataset:
  - Package: utils
  - View entire dataset in separate window
    - View(x, title)
  - View structure of dataset
    - str(object, ...)
  - First few elements of dataset (default is 5):
    - head(x, n, ...)
  - Last few elements of dataset (default is 5):
    - tail(x, n, ...)
- List of column names in dataset
  - Package: base
  - Formula: colnames(x)

## Missing Values

Missing Values are listed as "NA" in R


- Count number of NA's in column sum(is.na(x))
- Recode Certain Values as NA (i.e. non responses coded as -1)

$$x[x==-1] <- NA$$

## Renaming Variables (Columns)

#### A few different ways to do this:

- To rename the 'ith' column in a dataset
  - colnames(data)[i] <- "My Column Name"</p>
- Can be cumbersome especially if don't know column # of the column you want to rename (just it's original name)
- Alternative:



## **Subsetting Data**

- Subsetting can be used to restrict the sample in the dataset, create a smaller data with fewer variables, or both
- Recall: extracting elements from a matrix in R
  - matrixname[row #, column #]
- What's the difference between a matrix and a dataset?
  - Both have row elements
    - Typically the individual records in a dataset
  - Both have column elements
    - Typically the different variables in the dataset
- If we think of our dataset as a matrix, then the concept of subsetting in R becomes a lot easier to digest

## Subsetting Data (Continued)

#### **Examples:**

- Restrict sample to those with age >=50
  - > datas1 <- data[data\$age >=50,]
- Create a smaller dataset with just ID, age, and height
  - > datas2 <- data[, c("ID", "age", "height")]
- Create a smaller dataset with just ID, age, and height; with age >=50
  - > datas3 <- data[data\$age>=50, c("ID", "age", "height")]

## Part II

## R for Statistical Analysis

## Descriptive Statistics in R

- Mean
  - Package: base
  - Formula: mean(x, trim = 0, na.rm = FALSE, ...)
- Standard Deviation
  - Package: stats
  - Formula: sd(x, na.rm = FALSE)
- Correlation
  - Package: stats
  - Formula: cor(x, y = NULL, use = "everything", method = c("pearson", "kendall", "spearman"))

## Descriptive Statistics (Example)

- Suppose we had the following data column in R (transposed to fit on slide):
  - Vector = [5,5,6,4]
- What is the mean of the vector?
- In R, I would type
  - > mean(Vector)
  - > 5

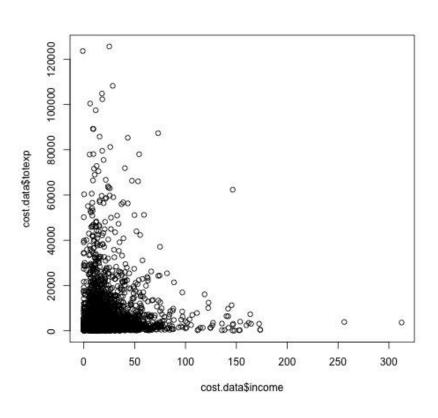
## Descriptive Statistics (Example)

- Suppose now we had the following:
  - Vector = [5,5,6,4,NA]
- What is the mean of the vector?
- In R, I would type
  - > mean(Vector)
  - > NA
- Why did I get a mean of NA?
  - Our vector included a missing value, so R couldn't compute the mean as is.
- To remedy this, I would type
  - > mean(Vector, na.rm=T)
  - > 5

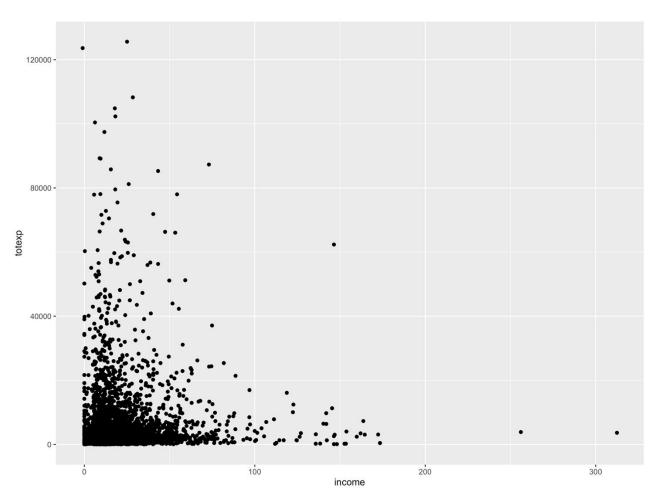
## **Graphing Data in R**

- Generic X-Y Plotting
  - Package: graphics
  - Formula: plot(x, y, ...)

#### Example:


plot(cost.data\$income,cost.data\$totexp)

- Plotting with ggplot() function
  - Package: ggplot2
  - Formula: ggplot(data = NULL, mapping = aes(), ..., environment =
     parent.frame())


#### Example:

```
ggplot(cost.data, aes(x=income, y=totexp)) + geom_point()
```

## Resulting Graph (Generic)



## Resulting Graph (ggplot2)



See <a href="https://github.com/rstudio/cheatsheets/raw/master/data-visualization.pdf">https://github.com/rstudio/cheatsheets/raw/master/data-visualization.pdf</a> for ggplot cheatsheet

#### Ordinary Least Squares

- The estimator of the regression intercept and slope(s) that minimizes the sum of squared residuals (Stock and Watson, 2007).
  - Package: stats
  - Formula: Im(formula, data, subset, weights, na.action, method = "qr", model = TRUE, x = FALSE, y = FALSE, qr = TRUE, singular.ok = TRUE, contrasts = NULL, offset, ...)

#### Examples:

Regression of "total health care expenditure" on "age, gender, household income, supplementary insurance status (insurance beyond Medicare), physical and activity limitations and the total number of chronic conditions" using dataset "cost.data" from Medical Expenditure Panel Survey (65+)

ols.costdata <- Im(totexp ~ age + female + income + suppins + phylim + actlim + totchr, data = cost.data)

Online Help File https://stat.ethz.ch/R-manual/R-devel/library/stats/html/lm.html

#### **Ordinary Least Squares**

```
> ols.costdata = lm(totexp ~ age + female + income + suppins + phylim + actlim + totchr, data = cost.data)
> summarv(ols.costdata)
Call:
lm(formula = totexp ~ age + female + income + suppins + phylim +
   actlim + totchr, data = cost.data)
Residuals:
          10 Median
  Min
                     30
                             Max
-17311 -5000 -2318
                      716 113095
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                     2597.715
                               3.218 0.00131 **
(Intercept) 8358.954
                        34.317 -2.487 0.01292 *
             -85.363
age
           -1383.290
                     427.485 -3.236 0.00123 **
female
                         9.568 0.676 0.49904
income
               6.469
        724.863 433.889 1.671 0.09490 .
suppins
phylim
            2389.019 534.738 4.468 8.21e-06 ***
            3900.491 582.991 6.690 2.65e-11 ***
actlim
totchr
            1844.377
                     172.919 10.666 < 2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
Residual standard error: 11290 on 2947 degrees of freedom
Multiple R-squared: 0.1163, Adjusted R-squared: 0.1142
F-statistic: 55.42 on 7 and 2947 DF, p-value: < 2.2e-16
```

Example adapted from Jones (2013) Applied Health Economics

#### **Post-Estimation**

Package: Imtest

Breusch-Pagan test for heteroskedasticity.

bptest(formula, varformula = NULL, studentize = TRUE, data = list())

Ramsey's RESET test for functional form.

```
resettest(formula, power = 2:3, type = c("fitted", "regressor", "princomp"), data = list())
```

Package: car

Variance Inflation Factor (VIF)

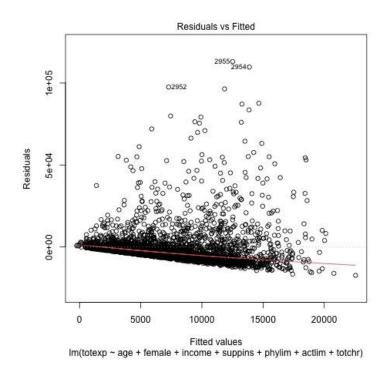
vif(*model*)

Package: sandwich

 Heteroskedasticity-Consistent Covariance Matrix Estimation coeftest(ols.costdata, vcovHC(ols.costdata, type = "HC1"))

Notes: need to combine with <a href="Image: Image: Image: Notes">Image: Image: Image:

## Extracting Beta coefficients, standard errors, etc. from model


• A couple of ways to do this, but most of the information we're after is stored in the coefficients object returned from summary:

```
> summary(ols.costdata)$coefficients
              Estimate Std. Error
                                    t value
                                               Pr(>|t|)
(Intercept) 8358.95394 2597.71486 3.2178104 1.305733e-03
             -85.36264 34.31701 -2.4874733 1.292031e-02
age
           -1383.28982 427.48537 -3.2358764 1.226119e-03
female
               6.46894 9.56821 0.6760867 4.990386e-01
income
        724.86321 433.88874 1.6706200 9.490295e-02
suppins
phylim
        2389.01859 534.73836 4.4676402 8.206489e-06
actlim
            3900.49083 582.99135 6.6904781 2.651802e-11
            1844.37687 172.91874 10.6661482 4.356843e-26
totchr
```

- The above is a matrix, so we can get the information we need through column extractions:
  - Beta coefficients: summary(ols.costdata)\$coefficients[,1]
  - Standard errors: summary(ols.costdata)\$coefficients[,2]
  - T-value: summary(ols.costdata)\$coefficients[,3]
  - P-value: summary(ols.costdata)\$coefficients[,4]

#### Residuals vs Fitted Values

- For Residuals vs Fitted Values (RVFV) Plot, use generic plot() function on regression object. First plot is RVFV
- Formula: plot(ols.costdata, 1)



<sup>\*</sup>Other diagnostic plots can be produced as well. See Kleiber & Zeileis (2008) for more

#### **Applied Example**

- Analysis of Health Expenditure Data in Jones et al. (2013) Chapter Three
- The data covers the medical expenditures of US citizens aged 65 years and older who qualify for health care under Medicare.
  - Outcome of interest is total annual health care expenditures (measured in US dollars).
  - Other key variables are age, gender, household income, supplementary insurance status (insurance beyond Medicare), physical and activity limitations and the total number of chronic conditions.
- Data can be downloaded from here (mus03data.dta): <u>https://www.stata-press.com/data/musr.html</u>

## Code for applied Example

```
rm(list = ls())
                          # remove any variables in R's memory
# Set working directory ----
setwd("/Users/Desktop/Example") #Set working directory
# Load R Packages ----
library(haven)
library(Imtest)
library(sandwich)
# Load Data ----
cost.data.all <- read dta("mus03data.dta") #read dta from haven package
## Get more info on dataset ----
str(cost.data.all)
# Clean Data ----
cost.data <- cost.data.all[cost.data.all$totexp>0,] #Restrict dataset to positive expenditures following textbook
# Regression ----
ols.costdata <- lm(totexp ~ age + female + income + suppins + phylim + actlim + totchr, data = cost.data)
## Results with HC robust standard errors ----
ols.costdata.robust <- coeftest(ols.costdata, vcovHC(ols.costdata, type = "HC1")) # Should match Table 3.3 in Book
# Export Results (as csv file) ----
costdata.results.robust = data.frame("Variable" = rownames(ols.costdata.robust),
                    "Beta" = ols.costdata.robust[,1],
                    "SE" = ols.costdata.robust[,2],
                    "Pvalue" = round(ols.costdata.robust[,4],4),
                    row.names = NULL)
write.csv(costdata.results.robust, "costregresults.csv", row.names = FALSE)
```

#### Instrumental Variables

A way to obtain a consistent estimator of the unknown coefficients of the population regression function when the regressor, X, is correlated with the error term, u. (Stock and Watson, 2007).

Package: AER

Formula: ivreg(formula, instruments, data, subset, na.action, weights, offset, contrasts = NULL, model = TRUE, y = TRUE, x = FALSE, ...)

Online documentation: https://cran.rproject.org/web/packages/AER/AER.pdf

#### IV Example

Example: Determinants of Income (As a function of Health)

```
> require(AER)
> iv = ivreg(Income ~ Health + Age | ParentHealth + Age)
> summary(iv, diagnostics = TRUE)
Call:
ivreg(formula = Income ~ Health + Age | ParentHealth + Age)
Residuals:
    Min
             10 Median
-3.1557 -0.6261 0.0130 0.6495 2.8700
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                                 29.92
(Intercept) 2.03965
                       0.06817
            0.99773
                       0.01186 84.16
Health
                       0.07256
                                 27.59
Age
             2.00177
                                         <2e-16 ***
Diagnostic tests:
                 df1 df2 statistic p-value
                   1 997
Weak instruments
                             1427 <2e-16 ***
                   1 996
                             2271 <2e-16 ***
Wu-Hausman
Sargan
                                       NΑ
                   0 NA
                               NA
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.9742 on 997 degrees of freedom
Multiple R-Squared: 0.9573, Adjusted R-squared: 0.9572
Wald test: 1.067e+04 on 2 and 997 DF, p-value: < 2.2e-16
```

Prints out F-test for
Weak Instruments,
Hausman Test
Statistic (vs ols) and
Sargan's Test for
Over-identifying
Restrictions (if more
than one instrument
use)

## Models for Binary Outcomes

 R does not come with different programs for binary outcomes. Instead, it utilizes a unifying framework of generalized linear models (GLMs) and a single fitting function, glm() (Kleiber & Zeileis (2008))

Package: stats

Formula: glm(formula, family = gaussian, data, weights, subset, na.action, start = NULL, etastart, mustart, offset, control = list(...), model = TRUE, method = "glm.fit", x = FALSE, y = TRUE, contrasts = NULL, ...)

- For binary outcomes, we specify family="binomial" and link= "logit" or "probit"
- Can be extended to count data as well (family="poisson")

Online help: <a href="https://stat.ethz.ch/R-manual/R-devel/library/stats/html/glm.html">https://stat.ethz.ch/R-manual/R-devel/library/stats/html/glm.html</a>

#### Other Regression Models

- Panel Data Econometrics
  - Package: plm
  - https://cran.rproject.org/web/packages/plm/vignettes/plm.pdf
- Linear and Generalized Linear Mixed Effects Models
  - Package: lme4
  - https://cran.r-project.org/web/packages/lme4/lme4.pdf
- Quantile Regression
  - Package: quantreg
  - <a href="https://cran.r-">https://cran.r-</a>
    project.org/web/packages/quantreg/quantreg.pdf

# Part III Other topics in R

## Tidyverse

#### Tidyverse

From Tidyverse website:

"The tidyverse is an opinionated collection of R packages designed for data science. All packages share an underlying design philosophy, grammar, and data structures...tidyverse makes data science faster, easier and more fun"

Source: <a href="https://www.tidyverse.org">https://www.tidyverse.org</a>

- Packages within tidyverse: ggplot2, dplyr, tidyr, readr, purrr, tibble, stringr, and forcats
- To get, type: install.packages("tidyverse") in R console

#### Tidyverse (Continued)

#### Package: dplyr

- Description: provides a flexible grammar of data manipulation.
- Example Commands:
  - Restrict sample to those with age >=50
    - subdata <- filter(data, age>=50)
  - Create a smaller dataset with just ID, age, and height
    - subdata <- select(data, ID, age, height)</li>
  - Create a smaller dataset with just ID, age, and height;
     with age >=50
    - subdata <- data %>% filter(age>=50) %>% select(ID, age, height)

#### Tidyverse (Continued)

Package: dplyr

- Example Commands (continued):
  - Create new variable (age) in existing dataset
    - data <- mutate(data, age = year dob)</li>
  - Rename a variable in a dataset (new name = old name)
    - data <- rename(data, race = R1482600)</li>
- https://cran.rproject.org/web/packages/dplyr/dplyr.pdf

## Tidyverse (Continued)

#### Other (selected) packages in Tidyverse:

- Package: readr
  - Description: The goal of 'readr' is to provide a fast and friendly way to read rectangular data (like 'csv', 'tsv', and 'fwf')
  - https://cran.r-project.org/web/packages/readr/readr.pdf
- Package: tidyr
  - Description: Tools for reshaping data, extracting values out of string columns, and working with missing values
  - https://cran.r-project.org/web/packages/tidyr/tidyr.pdf

#### Code for Applied Example

```
rm(list = ls())
                          # remove any variables in R's memory
# Set working directory ----
setwd("/Users/Desktop/Example") #Set working directory
# Load R Packages ----
library(tidyverse)
library(Imtest)
library(sandwich)
# Load Data ----
cost.data.all <- read dta("mus03data.dta") #read dta from haven package
## Get more info on dataset ----
str(cost.data.all)
# Clean Data ----
cost.data <- filter(cost.data.all, totexp>0) #Restrict dataset to positive expenditures following textbook
# Regression ----
ols.costdata <- lm(totexp ~ age + female + income + suppins + phylim + actlim + totchr, data = cost.data)
## Results with HC robust standard errors ----
ols.costdata.robust <- coeftest(ols.costdata, vcovHC(ols.costdata, type = "HC1")) # Should match Table 3.3 in Book
# Export Results (as csv file) ----
costdata.results.robust = data.frame("Variable" = rownames(ols.costdata.robust),
                    "Beta" = ols.costdata.robust[,1],
                    "SE" = ols.costdata.robust[,2],
                    "Pvalue" = round(ols.costdata.robust[,4],4),
                    row.names = NULL)
write.csv(costdata.results.robust, "costregresults.csv", row.names = FALSE)
```

## data.table Package in R

Package: data.table

Description from documentation: Fast aggregation of large data (e.g. 100GB in RAM), fast ordered joins, fast add/modify/delete of columns by group using no copies at all, list columns, friendly and fast character-separated-value read/write. Offers a natural and flexible syntax, for faster development.

#### General syntax

DT[i, j, by]

Source: <a href="https://cran.r-project.org/web/packages/data.table/data.table.pdf">https://cran.r-project.org/web/packages/data.table/data.table.pdf</a>

Why data.table? Factors to consider:

- Speed
- Memory Usage
- Syntax
- Features

See full discussion: <a href="https://stackoverflow.com/questions/21435339/data-table-vs-dplyr-can-one-do-something-well-the-other-cant-or-does-poorly">https://stackoverflow.com/questions/21435339/data-table-vs-dplyr-can-one-do-something-well-the-other-cant-or-does-poorly</a>

#### A note on computational efficiency

 Quote from Xu et al. (2016): "The authors have worked on several cases, in which analysis can be significantly improved by just replacing the usage of data frame with data table package." <a href="Empowering R with High Performance Computing Resources for Big Data Analytics">Empowering R with High Performance Computing Resources for Big Data Analytics</a>

Syntax comparisons

Base R read.csv(file, ...)

Tidyverse (readr package)

```
read_csv(file, ...)
```

data.table

```
fread(file,...)
```

How do the load times compare? Test on Canadian Community Health Survey 2013/14, 285.4 MB

#### Full Code for Applied Example

```
# Base R ----
t1 <- Sys.time()
d1 <- read.csv("cchs201314.csv")
comp.time1 <- Sys.time() - t1
# Tidyverse (readr package) ----
library(readr)
t2 <- Sys.time()
d2 <- read csv("cchs201314.csv")
comp.time2 <- Sys.time() - t2
# data.table ----
library(data.table)
t3 <- Sys.time()
d3 <- fread("cchs201314.csv")
comp.time3 <- Sys.time() - t3
```

Subset Data: Age group >=3 (18 and over)

Base R

cchs.sub <- cchsdata[cchsdata\$DHHGAGE>=3,]

Tidyverse

cchs.sub <- filter(cchsdata, DHHGAGE>=3)

data.table

cchs.sub <- cchsdata[DHHGAGE>=3]

Create new variable: flag (=1) for age group >=3 (18 and over), 0 otherwise

Base R

```
cchs$age_flag <- 0
cchs$age_flag[cchs$DHHGAGE>=3] <- 1</pre>
```

Tidyverse

```
cchs <- mutate(cchs, age_flag = ifelse(DHHGAGE>=3, 1, 0))
```

data.table

```
cchs[,age_flag:=ifelse(DHHGAGE>=3, 1, 0)]
```

Frequency of Age Group variable (CCHS)

Base R

ftable <- table(cchsdata\$DHHGAGE)

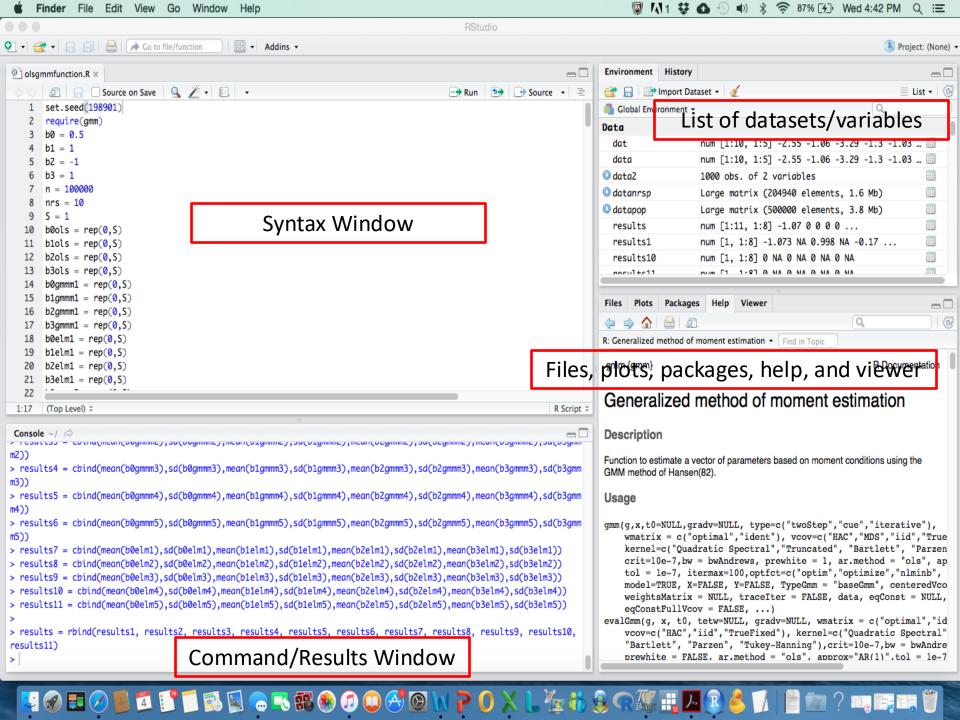
Tidyverse (dplyr package)

```
ftable <- cchsdata %>%
  group_by(DHHGAGE) %>%
  summarize(freq = n())
```

• data.table

ftable <- cchsdata[,.(.N),by=DHHGAGE]</pre>

#### Code for Applied Example


```
rm(list = ls())
                          # remove any variables in R's memory
# Set working directory ----
setwd("/Users/Desktop/Example") #Set working directory
# Load R Packages ----
library(haven)
library(Imtest)
library(sandwich)
library(data.table)
# Load Data ----
cost.data.all <- data.table(read_dta("mus03data.dta")) #read_dta from haven package
## Get more info on dataset ----
str(cost.data.all)
# Clean Data ----
cost.data <- cost.data.all[totexp>0] #Restrict dataset to positive expenditures following textbook
# Regression ----
ols.costdata <- Im(totexp ~ age + female + income + suppins + phylim + actlim + totchr, data = cost.data)
## Results with HC robust standard errors ----
ols.costdata.robust <- coeftest(ols.costdata , vcovHC(ols.costdata , type = "HC1")) # Should match Table 3.3 in Book
# Export Results (as csv file) ----
costdata.results.robust = data.frame("Variable" = rownames(ols.costdata.robust),
                    "Beta" = ols.costdata.robust[,1],
                    "SE" = ols.costdata.robust[,2],
                    "Pvalue" = round(ols.costdata.robust[,4], 4),
                    row.names = NULL)
write.csv(costdata.results.robust, "costregresults.csv", row.names = FALSE)
```

## R Studio

#### What is R Studio?

#### From R Studio Website:

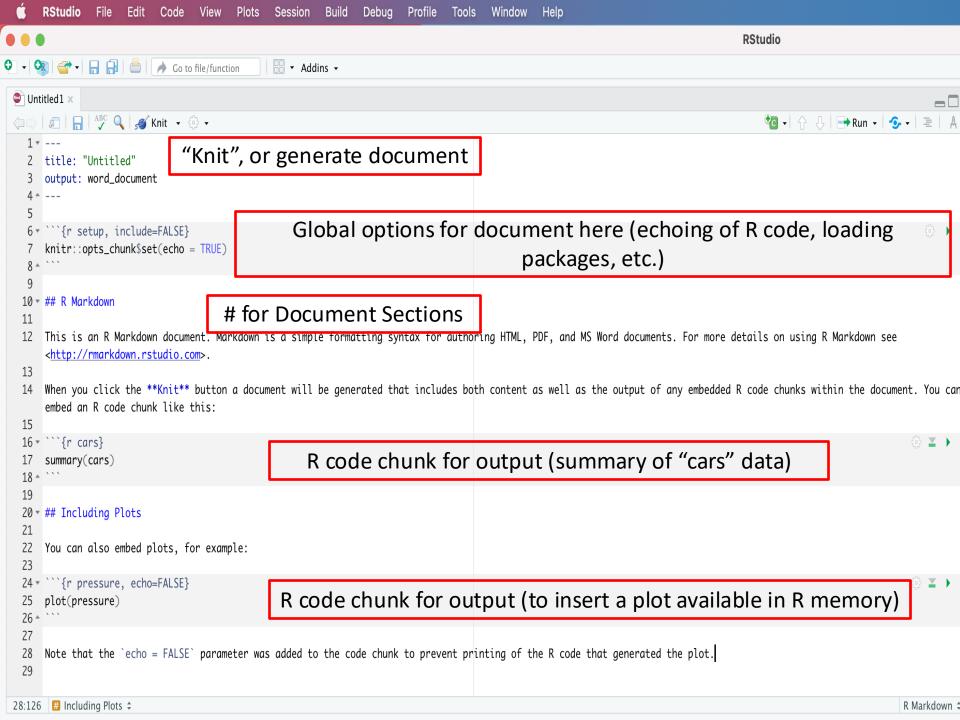
- An integrated development environment (IDE) for R. Includes:
  - A console
  - Syntax highlighting editor
  - Tools for plotting, history, debugging, and workspace history
- Can think of it as a more user friendly version of R
- A free version is available as well
- For more information, see <a href="https://posit.co/download/rstudio-desktop/">https://posit.co/download/rstudio-desktop/</a>



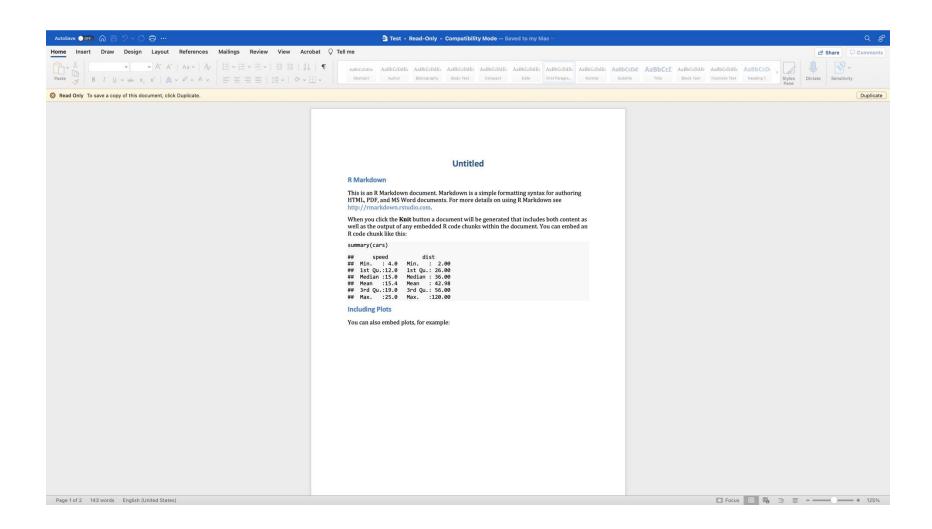
#### R Markdown

#### What is R Markdown?

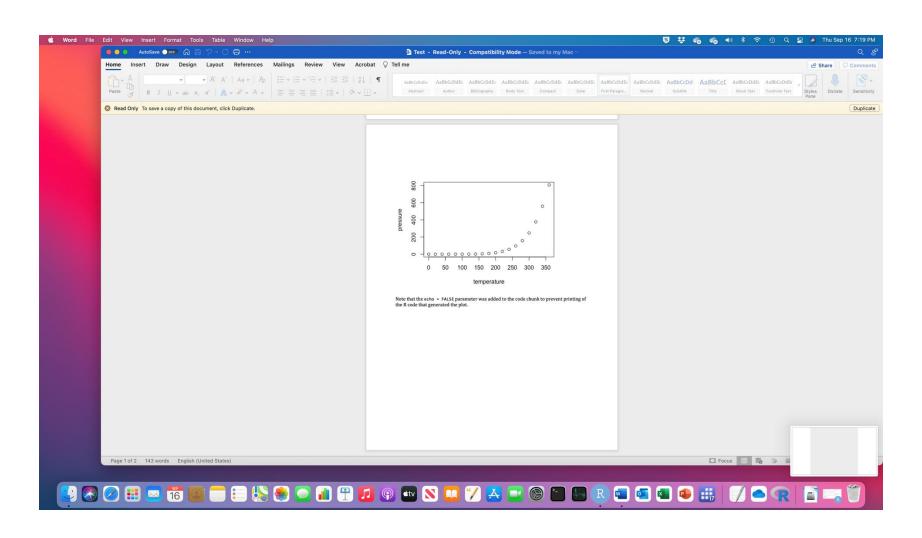
#### From R Markdown website:


"R Markdown provides an authoring framework for data science. You can use a single R Markdown file to both

- save and execute code
- generate high quality reports that can be shared with an audience"


Source: <a href="https://rmarkdown.rstudio.com/lesson-1.html">https://rmarkdown.rstudio.com/lesson-1.html</a>

With R Markdown, you can render to a variety of formats, which includes PDF (uses <u>LaTeX</u>) and Microsoft Word


To create a R Markdown file, go to File  $\rightarrow$  New File  $\rightarrow$  R Markdown



## Page 1 (of 2)



#### Page 2 (of 2)



#### Tips for Outputting In MS Word

| Output Option       | <ul> <li>The word_document2 (<u>Bookdown</u>) and rdocx_document (<u>Officedown</u>) formats are generally superior to word_document (default in R Markdown), particularly for automatic numbering of figures/tables, and cross-referencing of figures/tables.</li> <li>The rdocx_document lets you easily switch between landscape and portrait</li> </ul>                                                                                                                                                                                                                                                                                                                          |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tables              | Default knitr::kable() function works, but flextable() function flextable creates "pretty" tables with a large amount of flexibility (customize cell padding and column widths, table footnotes, long tables, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Figures             | Use knitr::include_graphics(filepath) for previously saved figures to include in the document                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| References          | <ul> <li>Default reference style is Chicago. Visit Zotero Style Repository to search for additional Citation Style Language (CSL) files (Vancouver, APA, journal specific styles, etc.). Can modify existing reference style, which may be necessary for certain journals (<a href="https://editor.citationstyles.org/about/">https://editor.citationstyles.org/about/</a>)</li> <li>Add citations with markdown syntax by typing [@cite] or @cite.</li> <li>Store references in plain text BibTeX database (*.bib)</li> <li>Can also look up and Insert Citations dialog in the Visual Editor by clicking the @symbol in the toolbar or by clicking Insert &gt; Citation</li> </ul> |
| Document formatting | To modify font sizes, text alignment, etc., need to create a reference style document following these instructions: <a href="https://rmarkdown.rstudio.com/articles_docx.html">https://rmarkdown.rstudio.com/articles_docx.html</a>                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

Please also see the R Markdown cheat sheet:

https://github.com/rstudio/cheatsheets/raw/master/rmarkdown-2.0.pdf

#### Applied Example 2

- Create a R markdown document using the results from the first applied example
- Export to be done in Word

## Code from Example

```
author: "Author Name"
title: "Essays on the use of R"
subtitle: "An Example Document"
date: "`r Sys.Date()`"
output: word_document
```{r setup, include=FALSE}
knitr::opts chunk$set(echo = FALSE)
rm(list = ls())
                         # remove any variables in R's memory
setwd("/Users/Desktop/Example") #Set working directory
# Introduction
This is an example document.
# Results
## Regression Results Table
```{r}
cost.data.results = read.csv("costregresults.csv")
knitr::kable(cost.data.results)
```

#### Conclusions

- R has extremely powerful data manipulation capabilities
  - Is fully capable of performing the same sort of tasks as commercial software programs
  - Can be enhanced through Tidyverse package for a more user friendly experience.
  - Can also be enhanced through data.table package (e.g., large datasets)
- R is very capable of statistical analysis
  - Is fully capable of calculating summary statistics and performing regression analysis right out of the box
  - Can install additional packages to perform other sorts of analysis, depending on the research question of the user
- R, and the additional packages available to enhance the use of R, are available <u>free of charge</u>

## R Resources

#### **R Online Resources**

A list of R packages is contained here:

https://cran.rproject.org/web/packages/available packages by
date.html

- By clicking on a particular package, you'll be taken to a page with more details, as well as a link to download the documation
- Typing help(topic) in R pulls up a brief help file with synax and examples, but the online manuals contain more detail

#### **R Online Resources**

- UCLA Institute for Digital Research and Education
  - List of topics and R resources (getting started, data examples, etc.) can be found here:
     <a href="http://www.ats.ucla.edu/stat/r/">http://www.ats.ucla.edu/stat/r/</a>
- RStudio (posit) Cheatsheets
  - <a href="https://posit.co/resources/cheatsheets/">https://posit.co/resources/cheatsheets/</a>

#### Other R Resources

- 1. Kleiber, C., & Zeileis, A. (2008). *Applied econometrics with R*. Springer Science & Business Media.
  - Great reference for the applied researcher wanting to use R for econometric analysis. Includes R basics, linear regression model, panel data models, binary outcomes, etc.
- 2. Jones, A. M., Rice, N., d'Uva, T. B., & Balia, S. (2013). *Applied health economics*. Routledge.
  - Excellent reference for applied health economics. Examples are all performed using STATA, but haven package should help here.
- 3. CRAN Task View: Econometrics
  - A listing of the statistical models used in econometrics, as well as the R package(s) needed to perform them. Available at: <a href="https://cran.r-project.org/view=Econometrics">https://cran.r-project.org/view=Econometrics</a>

## Other R Resources (Continued)

#### Resources for economic evaluation using R

4) Krijkamp, E. M., Alarid-Escudero, F., Enns, E. A., Jalal, H. J., Hunink, M. M., & Pechlivanoglou, P. (2018). Microsimulation modeling for health decision sciences using R: a tutorial. Medical Decision Making, 38(3), 400-422.

#### Chicago

- 5) Jalal, H., Pechlivanoglou, P., Krijkamp, E., Alarid-Escudero, F., Enns, E., & Hunink, M. M. (2017). An overview of R in health decision sciences. Medical decision making, 37(7), 735-746.
- 6) Alarid-Escudero, F., Krijkamp, E. M., Enns, E. A., Yang, A., Hunink, M. G., Pechlivanoglou, P., & Jalal, H. (2021). A Tutorial on time-dependent cohort state-transition models in R using a cost-effectiveness analysis example. arXiv preprint arXiv:2108.13552.

Thanks for Listening Good luck with R!