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Real-world 
Evidence in 
HTA



Perspectives on RWD are Changing

Change
Nature of the role for RWD in drug 

development.
Improved data access; updated guidance and 

advanced analytics have all opened doors.

Regulatory vs Payer
Felt the strongest in regulatory settings for 

targeted oncology and rare diseases. 
Areas of high unmet need, and challenging 

features for traditional trial design.

Specialization
As understanding of disease improves, many 

diseases become split into smaller 
subpopulations.

Challenges for traditional trial evidence.

More evidence
Simultaneously, payers are requesting more 

evidence for comparative efficacy and 
decision making.

RWD helping to bridge evidence gaps.



FDA Guidance
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• The FDA has issued draft guidance for sponsors to 
use data from registries and electronic health records 
in lieu of data from randomized controlled trials 
(RCTs). 

• Sponsors should consider the likelihood that such a 
trial design would be able to distinguish the effect of 
a drug and meet regulatory requirements. 

• The suitability of using an externally controlled trial 
design warrants a case-by-case assessment. 

• Sponsors should consult with the FDA early on to 
determine whether it is reasonable to conduct an 
external control trial. 

February 2023



CADTH

Section 10 of RWE Draft Reporting Guidance: Bias, Confounding, and Effect Modifiers/Subgroup Effects

Recommendations:
 Report all procedures used to address potential sources of bias
 Specify how potential sources of bias could influence the outcomes of the analyses
 Report whether any potential confounders could not be measured and specify the anticipated impact of 

these confounders on study results
 Specify the methods used to conduct sensitivity analyses that test key assumptions and limitations of the data, 

and if no sensitivity analyses were conducted, explain why not

• Guidance document now published
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• RWE Guidance Working Group
• Reporting to CADTH’s Real-World Evidence Steering Committee
• Objective is to: “…develop clear and comprehensive guidance on the conduct, reporting, and

appraising of RWE studies concerning the safety and effectiveness of health technologies for the
purpose of regulatory approval and health technology assessment (HTA) in Canada.”



Haute Autorité de santé (HAS)
A recently published article in BMJ Evidence-
Based Medicine from the French National 
Authority for Health (Haute Autorité de Santé) 
draws attention to the importance of both target 
trial emulation and quantitative bias analysis 
as critical tools for including real-world evidence 
in submission packages.

• "The discussion of...[residual bias]... should 
not be based on expert opinion only and should 
be documented, for example, using … 
quantitative bias analysis."

• “Residual confounding has been explored 
with analyses such as the use of 
…quantitative bias analysis and excludes a 
conclusion of no treatment effect.”

12



Institut für Qualität und Wirtschaftlichkeit im 
Gesundheitswesen (IQWiG)
• IQWiG has historically criticized the lack of relevant real-world comparator arms representing German 

routine practice 1,2 however, recent benefit assessments in oncology showed a potential shift toward 
use of high quality non-German data

• In 2022, IQWiG suggested benefits of real-world ex-German comparator arms in assessments 
for lung cancer treatment3,4

“…the company does not cite any reasons for […] using data only from the [German] CRISP registry for the 
comparison of individual arms […] despite the fact that further potentially relevant patient registries exist… For 
instance, the company itself mentioned the [United States] Flatiron Health database as a potential further data 
source…” (dossier assessment for sotorasib, 2022)

• Researchers may not be able to avoid the use of international data in German submissions if quality 
German RWD is not available. Transportability methods can have a complementary role to address 
common concerns about relevance of external evidence in the German setting. 

10
1. Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen. Supply-related data in manufacturer dossiers: things are not yet running smoothly. (2022). www.iqwig.de/en/presse/press-releases/press-releases-detailpage_67103.html
2. Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen. Registry-day – of sufficient quality – are suitable for the extended benefit assessment of drugs. https://www.iqwig.de/en/presse/press-releases/press-releases-detailpage_9982.html
3. Institute for Quality and Efficiency in Health Care. Sotorasib (NSCLC) - Nutzenbewertung gemäß § 35a SGB V. (2022). www.iqwig.de/download/a22-28_sotorasib_nutzenbewertung-35a-sgb-v_v1-0.pdf
4. Institute for Quality and Efficiency in Health Care. Amivantamab (NSCLC) - Nutzenbewertung gemäß § 35a SGB V. (2022). www.iqwig.de/download/a22-05_amivantamab_nutzenbewertung-35a-sgb-v_v1-0.pdf

http://www.iqwig.de/download/a22-28_sotorasib_nutzenbewertung-35a-sgb-v_v1-0.pdf
http://www.iqwig.de/download/a22-05_amivantamab_nutzenbewertung-35a-sgb-v_v1-0.pdf


Use of RWE in HTA and Regulation
Dynamics, drivers, and barriers to the use of RWE in HTA
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386

101

161

109

212

HTA submissions with RWE are accelerating
(especially in UK, Germany, France, and Canada)

40%
Increase from 2017 to 

2021 (n=969)

2017 2018

2019

202
0

2021

Submissions by country from 
2017 to 2021

Brazil = 152

Canada = 816

China = 4

France = 728

Germany = 749

Italy = 153

Japan = 13

Spain = 269

UK = 678

US = 12

3,574
Total

submissions

Source: IQVIA HTA Accelerator
Single Technology Assessment; original submissions, indication extensions and resubmissions between January 1, 2017 and December 2021 with RWE included and published by bodies
ISPOR Europe 2022 – Vienna: Use of Real-world Evidence to Support Health Technology Assessment in United States, Europe and Japan – A Brief Analysis



Use of RWE in HTA and regulation (cont.)
Dynamics, drivers, and barriers to the use of RWE in HTA
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Top RWE research 
areas in accepted 

submissions Safety

349
Epidemiology

233
Effectiveness

149

Main therapeutic areas 
with accepted 

submissions with RWE

Most frequent rationale 
for rejection

Oncology

280
Endocrine and 

metabolic diseases

107
Infectious and parasitic diseases

Central nervous system

56

Risk of bias

57
Patient selection

25
Insufficient data

Study population not well defined

17

Source: IQVIA HTA Accelerator
Single Technology Assessment; original submissions, indication extensions and resubmissions between January 1, 2017 and December 2021 with RWE included and published by bodies
ISPOR Europe 2022 – Vienna: Use of Real-world Evidence to Support Health Technology Assessment in United States, Europe and Japan – A Brief Analysis



• RWE as a tool to supplement, rather 
than replace RCT 

• Payers with responsibility for 
assessment after market entry are more 
responsive to RWE vs payers focused 
entirely on initial assessment

• Advisable for manufacturers to obtain 
payer insights throughout the clinical 
development program

• Many widely accepted use cases for RWE 
in HTA, but comparative effectiveness 
remains contentious

• NICE 2021 to 2026 strategy underpinned 
by a broader use of data

• To build trust in RWE:
 Build competence
 Proactively address data gaps
 Use NICE’s RWE framework

• RWE is a key aspect of the EMA clinical 
evidence vision for 2030

• Clinical evidence 2030 views on RWE:
 Establish value across use cases
 Build business processes
 Set standards
 Enable access
 Validate methods
 Train staff and stakeholders
 Internationalize

13

Use of RWE in HTA and regulation
European payer, regulatory, and HTA perspectives on RWE

Payer perspective HTA perspective Regulatory perspective

Suggested use cases
• (Ultra)orphan drugs and advanced medicinal 

products
• International approach to treatments for small 

patient populations
• Limited information on these products after 

market authorization
• Information on historical controls
• Direct collaboration between countries

Suggested use cases
• Populating and validating economic models
• Patient or user experience
• Impact of tests on decisions about care
• Impact of technologies on care delivery
• Understanding unmet
• Epidemiology of disease

Suggested use cases
• Support planning and validity of applicant 

studies: design and feasibility of planned 
studies, assess representative and validity of 
completed studies

• Understand clinical context: epidemiology, 
clinical management

• Investigate associations and impact: 
Effectiveness, safety, label expansion

Abbreviations: EMA, European Medicines Agency; HTA, health technology assessment; NICE, National Institute of Health and Care Excellence; RCT, randomized controlled trial; RWE, real-world 
evidence

Source: IQVIA HTA Accelerator
Single Technology Assessment; original submissions, indication extensions and resubmissions between January 1, 2017 and December 2021 with RWE included and published by bodies
ISPOR Europe 2022 – Vienna: Use of Real-world Evidence to Support Health Technology Assessment in United States, Europe and Japan – A Brief Analysis



Scrutiny of RWE
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Confounding and 
missing data with 
external evidence

NICE Real-World Evidence Framework

Determining how “bad” these 
evidence gaps are is 
challenging, and context 
specific.

Challenges for decision-makersCommon sources of bias in RWE

Unmeasured variables of interest

Lack of randomization

Missing values in measured RWD

Lack of harmonization

Lack of trust in RWD (validity, geographical relevance)

Concerns about residual bias

Risk of bias assessments are often qualitative and based on 
heuristics

Lack of pre-specified analysis

Recently, efforts have been put towards 
attempting to quantify these limitations, 
acknowledging that no data source is 
perfect.

For example, UK NICE specifically 
endorses quantitative bias analysis 
(QBA).

Selection of eligible participants

Corporate document published 23 June 2022



External 
Validity



External Validity

• Correctly estimating therapeutic intervention effectiveness is 
critical

• Internal validity

• Generalizability: From study sample to broader populations.
• Study may show positive outcome but…

• Challenges: Differences across geographies and patient groups.
• Gap in practice: External validity often overlooked.

• Inappropriate generalizations can potentially leading to suboptimal clinical 
decisions.



Potential Limitations of RCTs (6SC)

• Too Small: Limited size impacts rare outcome detection.
• Too Simple: Challenges in detecting interactions.
• Too Selected: Underrepresentation of key populations.
• Too Specific: Overly specific inclusion/exclusion criteria.
• Too Short: Short duration affects long-term outcome detection.
• Surrogate Measures: Efficacy may be based on indirect measures.
• Comparator Issues: Poor choice of comparator.



RCTs and Potential Threats to External 
Validity
• RCTs often lack representativeness of broader patient populations.
• Underrepresentation of certain at-risk demographic groups in RCTs.
• Trial participants often differ in age, health, and diversity from real-world 

clinics.
• Reduced applicability of RCTs' findings in real-world clinical decision-making.
• External factors, such as geography or changing medical standards, limit RCTs' 

usability.
• Greater adherence to medications observed in RCTs versus routine care.
• Meta-analyses of RCTs display heterogeneity in patient populations and 

treatment effects.



RWE to the rescue?

• Real-world evidence (RWE) can help address the 
generalizability limits of RCTs.

• However …
• RWE sources: electronic health records, claims, registries.

• with diverse ecosystem challenges.
• Transferring RWD across countries needs local context 

understanding.
• Need for definitive "decision-grade" RWD criteria.



Transportability 
& Generalizability



Internal Validity & External Validity
• Internal Validity

• Ensures unbiased effect estimate within the study sample.
• Main focus of most epidemiologic studies.

• External Validity (Generalizability & Transportability)
• Ensures unbiased effect when applied to different settings.
• Risks: Differences in subject characteristics, settings, treatments, outcome 

measures.

• Addressing Validity Concerns
• Align study and real-world contexts (e.g., care standards, outcome measures).
• Focus on enrollment variations, treatment effect differences, and correlations 

between them.
• Study vs Target



Degtiar, Irina, and Sherri Rose. "A review of generalizability and transportability." Annual Review of Statistics and Its Application 10 (2023): 501-524.

Internal Validity & External Validity



Generalizability and Transportability

• Generalizability
• Extension of causal knowledge from study to target 

population.
• Study population is a subset of the target.
• E.g., From a specific region to a country.

• Transportability
• Extends causal knowledge to a distinct target population.
• Study population is external or distinct from the target.
• E.g., Applying findings from one country to another.



Generalizability and Transportability



Transportability Analysis

• Can a treatment effect estimated using data from population A be used to 
estimate the treatment effect in another population B for which we don't have 
treatment/outcome data?

• Transportability Analysis is a set of quantitative methods by which the 
extension of such effects can be estimated.

• Those working with regulators and payers can use transportability analysis to 
optimize data collected from trial participants, when interpreting real world 
evidence.

• Transportability analyses can provide evidence of external validity

25
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Transportability analysis: what, where and how to use

• What is transportability analysis?

• Quantitative methods to reliably extend conclusions made from one 
study population to an external target population (see Figure).

• Is transportability analysis restricted to real-world data (RWD)?

• No. Transportability analysis can be conducted between any study population to any target population. It can involve 
extending conclusions from trial populations to real world target populations, or between non-overlapping real-world 
populations. 

• How can you apply transportability analysis?

• The use of external control arms (ECAs) from RWD to address comparative evidence gaps in single-arm submissions to 
reimbursement and regulatory bodies has been increasing rapidly. Variation in quality and availability of local RWD has 
led to use of RWD from outside of the country or setting of interest (the “target” population). Key question for decision 
makers becomes how relevant the submitted evidence is for the target population and whether ECA conclusions can be 
reliably “transported” across countries or settings. 

Researchers can use transportability analysis methods (similar to those adjusting for confounding) to assess how ECA 
results from a specific population apply in the target population. Findings from transportability analyses can enhance 
submissions to regulatory and reimbursement stakeholders to address concerns over lack of transportability when 
using international RWD.



Technical Approaches
General
Matching
Pair individuals to achieve covariate balance between study and target population through distance 
metrics.

Weighting
Create a balanced pseudo-population using inverse probability of sampling.

Outcome Modeling (g-formula)
Model outcome conditional on covariates, then marginalize over (standardize to) target covariate 
distribution.

Doubly Robust Approaches
Combine models for sampling and outcome to provide robustness against potential 
misspecifications.

A Review of Generalizability and Transportability. Irina Degtiar and Sherri Rose. Annual Review of Statistics and Its Application 2023 10:1, 501-524



Study 
Motivation & 
Background



Background
• Usage: Real-world data (RWD) increasingly supports regulatory 

submissions, especially for rare genetic cancers.
• Problem: Ensuring treatment effects from RWD are valid both for:

• Original sample (generalizability)
• Different populations (transportability)

• Study Focus: Assess RWD transportability of survival estimates for 
advanced non-small cell lung cancer (aNSCLC) between the US and 
Canada.

• Method: Use transportability analysis to evaluate if overall survival and 
treatment effect estimates from US RWD can be applied to Canada.

29



Visual representation of the study problem

• In both cases, we need to adjust the treatment outcomes estimated from sample data for effect 
modifiers (any variables that are imbalanced between sample data and target population that 
affect the treatment effect, e.g., if older patients do not respond to treatment as well as younger 
patients, and people in USA are younger than those in Canada)

• If we can adjust for all effect modifiers (unverifiable assumption*), then our transported effect 
estimate will be the same as the one that we would have estimated had we run the analysis on 
data from the target population

30

Target population 
(Canada)

Sample data from target 
population (Canada)

Study population (USA)

Sample data from study 
population (USA) [what we 
have in hand to run 
analysis on]

Generalizability – the 
analysis data is a subset of the 
target population in USA

Transportability – the 
analysis data is not a 
subset of the target 
population in Germany
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Patients in country/setting 
1 with Disease of Interest

Study 
Population with 

Disease of 
Interest

Target Population:

Patients in country/setting 
2 with Disease of Interest
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Patients in the United 
States with NSCLC

Patients with 
NSCLC* in the 
Flatiron Heath 
(FH) database

Target Population:

Patients with NSCLC* in the 
Alberta Cancer Registry and 
population-based Canadian 

province of Alberta data

* Patients on either first-line platinum-doublet chemotherapy or first-
line pembrolizumab monotherapy
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Project goals
Primary objective

Provide a demonstration of the application of transportability methods to transport 
overall survival estimates for aNSCLC patients who initiated 2L docetaxel and 1L 
platinum chemotherapy from the FHAD to O2

Secondary objective

Conduct a quantitative bias analysis to quantify the impact of unmeasured prognostic 
factors on any discrepancies between survival curves

We worked under the assumption that relative risks (e.g. hazard ratios) are 
transportable if absolute risks transport in the overall population.



Data Sources



RWE 
database 
analyses
Flatiron Health - USA

35

Derived from EHR (Electronic Health Records) data
• Longitudinal, demographically and geographically diverse
• Cutoff Date: September 30, 2020

Database Composition:
• Over 280 cancer clinics (approx. 800 sites of care) in the U.S.
• Represents >2 million active patients
• Majority are from community oncology settings

Study Approvals:
• Institutional Review Board approval obtained
• Informed patient consent waived (deidentified data)

Data Extraction:
• Includes patient-level demographic, clinical, and outcomes data
• Combination of structured data and elements from unstructured clinical documents

Data Processing:
• Structured data: aggregated, normalized, and harmonized across clinics
• Documents: classified into 24 standard categories
• Unstructured data: extracted via technology-enabled abstraction

Specific Data Details:
• Dates of death: sourced from a composite mortality variable
• Lines of therapy: determined from drug order and administration, based on oncologist-defined 

rules



RWE database analyses
Oncology outcomes - Canada

36

• Complete provincial population - Cancer 
Treatment and Outcomes Data for 
Province of Alberta (4.5 million residents)

• 2005 to 2022 (ongoing) (approximate six-
month lag for a few of the data 
components)

• >200,000 cases to date

• 100% coverage of cancer cases (through 
mandatory reporting in cancer registry)

• Lower numbers for less common cancers 
and by histology

Possibility to extract additional clinical data from medical charts 

Abbreviations: AI, artificial intelligence; ATP, Alberta’s Tomorrow Project; CPSA, College of Physicians & Surgeons of Alberta; Dx, diagnosis; EMR, electronic medical record; F/U, follow-up; NLP, 
natural language processing; POET, Precision Oncology Experimental Therapeutics

Population-based data
• Two tertiary centers
• Four regional centers
• 11 community centers



Methods



Overview of transportability analysis
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• Identical eligibility criteria are applied to 
select patient groups in sample and target 
populations

• Kaplan-Meier estimates KMFH and KMO2 are 
unadjusted estimates of overall survival in the 
sample and target populations

• We first fit a parametric model PFH of survival 
as a function of patient covariates on the 
sample patient group data 

• PFH  ≈ KMFH if the parametric model fits well 

• The transported curve PFH→O2 represents the 
model adjusted for individual-level baseline 
covariates from the target group O2

• PFH→O2  ≈ KMO2 if transportability “holds”. A 
threshold of <5% mean absolute difference 
between PFH→O2  and KMO2 implied sufficient 
similarity for this study.

Sample 
population

Target 
population

1. Fit parametric model 
on EDM cohort PFH

2. Standardize survival to 
covariate data from O2 

PFH→O2 

3. Compute KM curves on 
O2 cohort

Align eligibility criteria 
and treatment strategies

4. Compare
predicted survival 

(PFH→O2) and actual 
survival (KMO2)



Eligibility Criteria

Harmonized between US 
and Canadian data sets.

Patients 18 years or 
older.

Diagnosed with 
advanced* NSCLC 

(stage IIIb, IIIc, or IV) 
on/after January 1, 

2011.

Followed up until 
September 30, 2020.

Exclusions:
•US: >90-day gap between advanced 

NSCLC diagnosis and first recorded visit 
or medication.

•Canadian: No therapy initiation within 180 
days of diagnosis.

•Tumor characteristics as "not otherwise 
specified".

•Missing data for baseline covariates (US)

* Data for patients with early-stage cancer progressing to advanced disease was unreliable in Alberta data set.



Treatment Regimens

Two primary groups

First-line platinum-
doublet chemotherapy 
after diagnosis (e.g., 

cisplatin + paclitaxel).

First-line 
pembrolizumab 
monotherapy.

Exploratory analysis 
on third group 

Second-line docetaxel 
after previous 

chemotherapy but no 
exposure to certain 
immunotherapies.

Outcomes expected 
to be homogenous 

within each 
treatment group. 

Any dose permitted.

Limitation

Information on ECOG 
performance status 
and post-diagnosis 

metastases not 
available for Canadian 

data set.



Baseline Covariates

Age, sex, cancer 
stage at diagnosis, 
ECOG performance 

status.

Tumor histological 
characteristics, 
smoking history.

Time since 
diagnosis, time 
since January 1, 

2011.

Comorbidities and 
metastases
• potentially recorded 

differently between US 
and Canadian samples.

*Race and ethnicity 
not analyzed

*Not available in Canadian Data; assumed expected similarity between US and Canadian patients.



Outcome

• Overall survival 
• Measured from index date to all-cause death.
• For the FH data set, the 15th of each month was 

imputed as the date of death.
• Patients with missing information were censored at last 

recorded activity or September 30, 2020.



Outcome Model & Approach

• Data pooling limitations between US and Canadian datasets.
• Prespecified outcome regression model used for survival as a function 

of patient-level covariates.
• Standardized using target population covariate distributions to obtain 

marginal survival probabilities.
• Pooled logistic regression model for transportability analysis:

• Fitted on up to 60 months of US cohort follow-up data.
• Modeled probability of survival based on baseline covariates.
• Q model specification: no interaction terms; quadratic terms for continuous 

variables.
• Time (in months) as a cubic spline with manually specified knot locations.
• Coefficients equivalence checked against Cox regression for time-to-event data.



Estimation and Assessment of Transportability

Individual-level 
survival probabilities 
estimated using 
fitted models for up 
to 60 months.

Used baseline covariates 
for either US or Canadian 
cohorts for analysis.
Cumulative mean survival 
probability by month 
derived.

Standardized 
parametric estimates 
of OS in Canadian 
cohorts compared 
with Kaplan-Meier 
estimates:
For sufficient similarity, 
≤5% mean absolute 
difference chosen 
between model estimated 
& observed OS.

Percentile-based 
95%CIs with 1000 
iterations of 
nonparametric 
bootstrapping.

Resampling by patient, not 
observation (using patient-
month unit).

Monthly survival 
probabilities plotted 
as a function of time.



Statistical Model
Pooled Logistic Regression

• Definition: PLR uses logistic regression to relate predictors to event 
outcomes within specific intervals.

• Event Outcome:
• Indicates whether an event occurs in an interval.
• Does not specify when the event occurs within that interval.
• Events at start and end of the interval are treated equally.

• Key Properties:
• No inflation of test statistics due to multiple interval records per individual.
• Likelihood factors into a distinct term for each interval.
• Treats all records within the person-period dataset as conditionally independent.

• Estimations:
• Provides conditional odds ratios for event in an interval.
• Direct estimates of the hazard rate with approximate standard errors.

• Connections to Other Models:
• When follow-up is short and event is rare, approximates estimates from the Cox 

proportional hazards model.

β o is the intercept for the logistic 
model. 

Y i (t k ) represents the observed 
longitudinal measures for the 
interval; 

θ k denotes the effect of time t k . 

The time point t k is an element of the 
vector representing when the 
longitudinal measures were 
recorded. 

Ngwa, J.S., Cabral, H.J., Cheng, D.M. et al. A comparison of time dependent Cox regression, pooled logistic regression and cross sectional pooling with simulations and an application to the 
Framingham Heart Study. BMC Med Res Methodol 16, 148 (2016). https://doi.org/10.1186/s12874-016-0248-6



Quantitative Bias Analysis
Tipping Point and Sensitivity Analyses

• Objective: Evaluate potential consequences of underrecorded metastases and 
comorbidities in the FH database for transportability results.

• Methodology:
• Employed a tipping point analysis by imputing values for inaccurately measured metastases 

and comorbidities.

Overimputation scenario

positive recording status (ie, status 
recorded in the FH database) 
corresponded to the presence of 
metastases or comorbidities

nonpositive recording status could 
correspond to either the presence or 
absence of metastases and 
comorbidities in the FH data.

• Used logistic regression models to determine metastases and 
comorbidities based on:

• Survival time (months)
• Event indicator at follow-up end
• Baseline covariates.

• Models helped in imputation for patients missing recorded data on 
conditions.

• Introduced overimputation for bias analysis 
• Used δ adjustment to simulate prevalence increase until mean 

absolute difference was ≥ 5% (“tipping point”).



Handling missing values under different assumptions
𝛿𝛿-adjustment for MNAR

47

1. Imputation of 
missing values 
using different 

settings

2. Adjustment for 
each setting 

3. Compare 
conclusions

Apply a shift value to 
predictions to simulate 
better- or worse-than-
expected (given observed 
data) imputations in one 
treatment group



𝛿𝛿-adjustment for MNAR
• Apply a shift value 𝛿𝛿 to the imputation model (the interpretation of 𝛿𝛿 depends on the 

imputation model)

logit 𝑃𝑃 𝑍𝑍 𝑿𝑿 =  𝛾𝛾0 + 𝜸𝜸𝑇𝑇𝑿𝑿
logit 𝑃𝑃 𝑍𝑍 𝑿𝑿 = 𝛾𝛾0 + 𝜸𝜸𝑇𝑇𝑿𝑿 + (1 − 𝑅𝑅)𝛿𝛿

Impute Z with multiple 
imputation under MAR

Run analysis (e.g. IPTW Cox) on 
each imputed dataset and get 

pooled effect estimate

Impute Z with multiple 
imputation under MNAR over a 

range of 𝛿𝛿 values

For each 𝛿𝛿, run analysis model on each imputed 
dataset and get pooled effect estimates

Identify 𝛿𝛿 where conclusions change 

48



Modelling deviations from MAR: missing data
Results from Wilkinson et al

RCT vs. RWD
alectinib vs. ceritinib 

RWD vs. RWD
alectinib  vs. ceritinib 

49Wilkinson S, Gupta A, Scheuer N, Mackay E, Arora P, Thorlund K, et al. Assessment of Alectinib vs Ceritinib in ALK-Positive Non-Small Cell Lung Cancer in Phase 2 Trials and in Real-world Data. JAMA Netw
Open. 2021 Oct 1;4(10):e2126306.

MARMAR



Sensitivity to Unadjusted Differences in 2L  
US vs Canada
• Evaluated results' sensitivity concerning the prevalence of PD-L1 immunotherapy 

after disease progression from first-line platinum-doublet chemotherapy.
• Used G computation to estimate marginal risks under two hypothetical dynamic 

treatment regimens.
• Included time-varying cancer progression indicator and a 3-way interaction for time-

varying hazards.
• Modeled two interventions based on transition between chemotherapy and 

immunotherapy:
• Chemotherapy → Immunotherapy
• Chemotherapy → Chemotherapy

• Represented hypothetical scenarios where patients discontinuing first-line treatment 
could either receive only immunotherapy or only chemotherapy.

• Calculated maximum risk differences using nonparametric bootstrapping with 
gfoRmula package for R, version 0.3.2.



Results



Baseline 
Characteristics 

US and 
Canadian 
Patients With 
Complete Data 
for Covariates



• Comparison of unadjusted Kaplan-Meier curves vs standardized parametric estimates (outcome model). 
• Kaplan-Meier curves and parametric estimates for the sample population were expected to overlap by design 

(positive control).

Survival Curves for US Patients
Goodness of fit on total US data as a positive control

DiffMax in regression coeffients= 0.05

DiffMax in regression coeffients= 0.13



Transportability results
First-line chemotherapy

• After adjustment for 
baseline covariates, the 
transported curve PFH→O2
(blue) almost completely 
overlapped with the 
target KMO2 (black)

• Mean absolute 
difference was 
0.56%

• Therefore, the model is 
transportable for the 1L 
chemo group
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observed

modelled
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• After adjustment for baseline 
covariates, the transported curve 
PFH→O2 (green) was similar to the target 
KMO2 (black)

• Overestimated survival initially, 
but progressively aligned closer

• Mean absolute difference was 
4.54%

• Before adjustment, survival curves 
were similar (grey and black curves)

• Negative control (purple) used a 
mismatched outcome model where the 
1L chemotherapy model was 
standardized to 1L pembrolizumab 
covariates in Canada

• Mean absolute difference was 
6.64% and shape of curve was 
incompatible

• Therefore, the model is transportable 
for the 1L group

Transportability results
First-line pembrolizumab observed

modelled



Bias Analysis
• Overall survival curves under 

hypothetical scenarios in which 
patients who received first-line 
platinum-doublet chemotherapy 
could only receive second-line 
immunotherapy or second-line 
chemotherapy, regardless of drug 
costs. 

• The index date (time zero) 
corresponds to the time of 
initiation of first-line treatment. 

• The gray Kaplan-Meier curve (US) 
represents observed risks. 

• Numbers at risk pertain to US 
patients



Discussion
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Transportability of overall survival for real-world patients with advanced 
non-small cell lung cancer from the US to Canada
Implications for regulatory and health technology assessment

1. OS from US real-world data can be adjusted using baseline 
clinical characteristics to closely approximate OS in select 
groups of Canadian real-world aNSCLC patients. 

2. A principled approach can be used to support regulatory 
decision-making and health technology assessment in target 
populations outside of the US. 

Sensitivity analysis suggests results are robust to:
• assumptions of random missingness for baseline 

covariates, 
• unadjusted differences in baseline metastases and 

comorbidities
• differences in the standard of care between US and 

Canada*

Uncertainty around the external 
validity of survival outcomes 
derived from real-world data 
from US patients
•HTA decision-making outside of the US. 

Evaluate transportability of 
overall survival (OS) for 
•Transport from a large US real-world 
database  Canadian practices. 

Analysis completed using 
patients with imputed data for 

baseline covariates

Plat. doublet 
chemo

or 
Pembro mono 

as 1L

Transported OS estimates showed <5% mean absolute difference 
from the observed OS in the target population

•0.56% and 4.54% respectively 

Negative control analysis using a mismatched outcome model 

•6.64% discrepancy and incompatible survival curve shape. 



Assumptions of 
transportability



Conclusions & 
Future 
Research



Conclusions

• Demonstrates feasibility to transport OS estimates from US to 
Canadian patients.

• Underscores transportability analysis as a tool for confirming 
external validity of RWE.

• Direct implications for healthcare stakeholders in HTA decision-
making.

• Ramagopalan et al’s study highlights the potential of 
transportability in oncology.

• Sets the stage for future HTA endeavors, positioning 
transportability as a crucial tool in modern cancer care.



Future Areas of Research in Generalizability 
and Transportability Studies
• Quantitative frameworks for internal and external validity.
• Emphasis on generalizability of applied research findings.
• Addressing limitations in data availability, quality, and missing data.
• Exploration of study designs that enhance generalizability.
• Achieving consensus on “decision-grade” real-world evidence.
• Formal evaluation by regulators and HTA bodies on generalizability 

and/or transportability.
• Development of comprehensive frameworks and guidance on 

execution and interpretation of analytical methodologies.



Extensions to transportability work
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• Using methods to account for missing baseline information in target 
population

1. Impact of missing 
observations

• Incorporating external expert knowledge when IPD is not available for 
the target population

2. Relies too much on IPD 
in the Target Population

• Additional treatments/regimens 
• Expand to individuals with recurrent disease or other disease sites

3. Specific to indication 
and limited treatments 

(narrow focus)

• Pilot test transportability results between US and ex US via a health 
economic model

4. Solidify the link between 
clinical and economic 

outcomes

• Apply various approaches to model and report uncertainty in 
transported estimates5. Uncertainty
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