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1. Introduction  
Intended to reward innovation, patents can also impede the diffusion of affordable 

generic drugs and the development of new formulations. A patent owner has the right to exclude 

others from using an invention and associated know-how for roughly two decades. In principle, 

manufacturers can license a patent to produce and sell a drug before patent expiration by paying 

royalties. In practice, firms “ever-green” patents (Hemphill and Sampat, 2012), making it costly 

to license when each drug can be covered by hundreds of patents (Shapiro, 2001). This situation 

has more severe impacts in developing countries, where many drugs remain unaffordable and 

unavailable decades after their initial approvals (Kremer, 2002; Cockburn et al., 2016).1 When 

such drugs are available, substantial welfare gains can be achieved (Azomahou et al., 2016).  

The tradeoff between patent protection and access to medicines can result in negative 

consequences to both patients and firms. One notable illustration is the distribution and 

development of drugs to treat acquired immunodeficiency syndrome (AIDS) caused by the 

human immunodeficiency virus (HIV). Standard treatments require the bundling of multiple 

drugs (i.e., cocktails) taken daily, of which each constituent drug can be owned by a different 

firm. As of 2017, only about 59% of the 37 million people living with HIV worldwide had 

access to HIV drugs.2 The lack of a stable supply of drugs and fixed-dose cocktail pills make it 

difficult for patients to adhere to a course of medical treatment, which further accelerates 

antimicrobial resistance. In response, governments and generic drug firms in developing 

countries infringe on and invalidate patents, which can further reduce innovation incentives.  

This paper studies the Medicines Patent Pool, the first public health-oriented patent pool 

designed to reduce the tension between patent protection and technology diffusion. Patent pools 

are joint licensing platforms that typically gather complementary patents from patent owners and 

provide “one-stop shopping” to manufacturers (Figure 1). Historically, patent pools were 

commonly used in many sectors, including aircraft, railways, and radio (Lerner and Tirole, 

2004). Patent pools disappeared after World War II as regulation changed and revived in the late 

1990s to spur the development of information and communication technologies. Although there 

 
1 Generic firms have comparative advantage in producing low-cost new cocktails. Before India started 
enforcing patents, the first qualified single-pill HIV cocktail was created by Cipla in 2001 for $350 per patient-
year, whereas the prices for the three standalone drugs were above $10,000. The cost dropped to $140 per year 
after more generic entry (Hoen, 2016). Generic HIV drugs cost over $200 per patient-year in early 2000s, 
when low-income countries had average per capita health spending of $23 (Tirole, 2006).  
2 Source: https://www.hiv.gov/hiv-basics/overview/data-and-trends/global-statistics.  

https://www.hiv.gov/hiv-basics/overview/data-and-trends/global-statistics
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is interest among practitioners and federal agencies in creating medical patent pools (Clark et al., 

2000; Van Overwalle, 2016), progress has been slow in the heavily regulated medical sector.  
 

 
Figure 1: Graphical Structure of the Licensing Market without and with a Patent Pool 

 

Notes: Each technology (e.g., a drug) has numerous underlying patents, and a drug cocktail requires licensing 
multiple compounds for each licensee. Royalty rate negotiations for multiple patents from one or more patent 
owners complicate the process (left). A patent pool provides a one-stop shopping through a joint licensing 
platform (right). Therefore, more licensees can enter the market.  
 

This paper investigates the first modern biomedical patent pool, the Medicines Patent 

Pool (MPP), which allows easy access to a set of drug patents from multi-national firms with the 

goal of fostering the generic diffusion of drugs and development of new drugs for developing 

countries. Founded in Geneva, Switzerland in July 2010, the United Nations-backed, Unitaid-

funded MPP aims to facilitate generic licensing for drugs that typically treat diseases that 

disproportionately affect resource-limited countries. These MPP licenses do not apply to high-

income countries. Although the pool initially targeted HIV drugs only, it began to cover 

Hepatitis C and tuberculosis in 2015, further expanded its mandate to include all small molecule 

drugs on the World Health Organization (WHO)’s essential medicine list, and it became part of 

the WHO’s COVID-19 Technology Access Pool (C-TAP) on May 29, 2020.3  

An illustrative example suggests that the MPP accelerates generic entry and new drug 

product development. A new compound, dolutegravir (DTG), was first approved in the US in 

August 2013 and was added to the MPP in March 2014. Over a hundred patents on DTG were 

 
3 Source: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-
coronavirus-2019-ncov/covid-19-technology-access-pool.  

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov/covid-19-technology-access-pool
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov/covid-19-technology-access-pool
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licensed from the pool by the generic firm Mylan in July 2014. The first DTG-based three-drug 

single-pill cocktail (TLD) made by Mylan was approved in 2017 for sales in developing 

countries; four other generic firms also obtained MPP licenses and drug approvals in 2018. 

Without the MPP, this process typically takes over a decade (Cockburn et al., 2016).  

A biomedical patent pool can affect static efficiency (i.e., deadweight loss) and dynamic 

efficiency (i.e., innovation incentives) through different channels. It can improve static welfare 

by addressing three problems: (1) transaction costs stemming from multiple royalty negotiations 

with multiple patent owners; (2) hold-up problems where one failed royalty negotiation can 

prevent licensing and distribution of a generic cocktail; and (3) double-markup problems where 

downstream firms can also exert market power. The impact of a pool on dynamic efficiency is 

less clear. A pool can spur new drug product innovation from branded or generic firms by 

reducing licensing and litigation costs, increasing royalty revenue from underinvested markets 

for branded firms which pool patents, and enabling the development of new generic products to 

meet the demand in poor countries. However, a pool can stifle innovation if licenses have price-

fixing terms and restrict licensees in product development. Hence, the effect of a patent pool on 

innovation is ambiguous and depends on its design, underscoring the need for empirical analysis.  

This paper examines the impact of the MPP on static and dynamic welfare: how the MPP 

affects generic shares in developing countries and the spillover effect to R&D. To examine how 

the MPP affects generic drug diffusion, I use the arguably exogenous variation of when a drug is 

included in the pool for generic licensing for a given territory. A new dataset is constructed with 

drug sales in developing countries and with the generic share of drug purchases as the main 

outcome variable. The pool-inclusion timing is driven by factors independent of changes in the 

outcomes of interest, such as firms’ attitudes and administrative efficiency, and are not often 

changed at the drug-country level. Critically, I show that the timing is not determined by changes 

in demand-side factors such as HIV prevalence and death rates. Adding a drug in the MPP for a 

country is found to increase generic share by about seven percentage points in that country, a 

result that is robust across various tests. I support the identifying assumptions using event 

studies, robustness tests, Bacon decomposition, new methods to test and model pre-trends, and 

interviews that all indicate that the timing of MPP entry is orthogonal to my outcomes of interest.  

To further understand MPP-related changes of R&D on HIV drugs, all US-registered 

global clinical trials and drug product approvals by the two largest global approval agencies are 
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collected. With pro-competitive MPP license terms that emphasize diffusion-oriented innovation, 

I find increases in follow-on clinical trials that improve the use or bundling of a compound. Once 

an MPP compound enters the pool, more trials are initiated and more firms participate in drug 

trials that include the compound. In particular, firms outside the pool increase late-stage trials for 

drug cocktails that include pooled compounds, and firms inside the pool invest more in new 

compound development. Post-approval trials that focus on long-term effects are shifted from 

pool insiders to pool outsiders. Furthermore, MPP-included compounds result in more new drug 

product approvals, especially of generic drugs approved for sales in developing countries. These 

new products can be licensed back to branded firms and thus also benefit developed countries.  

This paper contributes to two strands of literature. First, I extend research on innovation 

and the economy by studying an institutional innovation designed to balance intellectual property 

protection and access to medicines. Prior studies find that innovation increases with market size 

(Acemoglu and Linn, 2004; Dubois et al., 2015) but changes ambiguously with patents 

(Williams, 2013; Sampat and Williams, 2019). In the global setting, ex ante analyses find patent 

enforcement can result in large welfare losses (Chaudhuri et al., 2006). Ex post studies are 

inconclusive, either finding little impact of drug patents on prices and sales (Duggan et al., 

2016), or suggesting that patented drugs have higher prices and sales conditional on launch (Kyle 

and Qian, 2017). However, there is limited understanding on how to sustainably scale up drug 

diffusion and innovation for diseases primarily affecting low-income countries. The welfare 

effects of drug cocktails are ambiguous in merger simulations (Song et al., 2017), one of the 

inter-firm strategies closest to forming a patent pool. This paper provides the first evaluation of 

whether a novel institution can effectively balance diffusion and innovation.  

Second, this paper contributes to the patent pool literature as the first empirical analysis 

of a biomedical patent pool. Theory papers emphasize the importance of pooling complements 

(Shapiro, 2001; Lerner and Tirole, 2004) and discuss the complications for patent pools with 

both complementary and substitutable patents (Lerner and Tirole, 2015; Rey and Tirole, 2019). 

Even patent pools consisting of complements may have adverse effects (Reisinger and Tarantino, 

2019). Many theoretical predictions are difficult to test empirically, especially when measuring 

the degree of substitutability by ex post prices or litigation, which can be endogenous to the pool. 

The MPP is designed to include all patents for a pre-set licensing territory and thus does not have 

patent-level selection in inclusion. In addition, most empirical studies on patent pools are either 
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historical (Lampe and Moser, 2013, 2015) or on modern software pools (Lerner et al., 2007; 

Bekkers et al., 2017) that face challenges in data and measurement that limit implications for 

other sectors.4 I overcome these hurdles by using rich institutional details from life sciences.  

In addition, this paper complements the recent study by Galasso and Schankerman (2021) 

that focuses on MPP's impact on drug diffusion through licensing (see also Martinelli et al., 2021). 

Galasso and Schankerman (2021) focuses on diffusion using proprietary data, and estimates a 5 

to 10 fold increase in licensing stemming from the MPP. In comparison, my paper offers a 

systematic evaluation of MPP by examining the theoretically ambiguous effects on innovation 

(Rey and Tirole, 2019) and its relationship with generic drug diffusion on a larger sample of low-

income countries. Previous studies have not investigated the effects of the MPP on upstream 

innovation. My paper is also distinctive in that it finds positive spillover effects of the MPP on 

upstream R&D measures. This is an important empirical finding in the patent pool literature, as a 

patent pool can potentially result in negative innovation outcomes theoretically and demonstrated 

in empirical work on other patent pools (Lampe and Moser, 2013, 2015).   

Finally, the Covid-19 pandemic has caused many challenges in the global supply chain, 

and the MPP has mitigated some of these issues. In particular, since becoming a key 

implementing partner of the Covid-19 Technology Access Pool (C-TAP), the MPP has made 

substantial contributions in facilitating licensing of Covid-19 related treatments and technology. 

For example, by the end of 2021, the MPP has made voluntary licensing agreements with Merck 

and Pfizer for Covid-19 treatments and investigational drug cocktail therapies. The MPP has also 

been essential in the establishment of technology transfer hubs in developing countries.5 While a 

patent pool cannot solve all challenges in drug access and innovation, and cannot be applied in 

all contexts, my study on the MPP in its pre-pandemic activities provides early insights on one 

option to tackle problems associated with the current pandemic and possibly future ones.  

The paper proceeds as follows. Section 2 lays out the background. Section 3 describes the 

data. Sections 4 and 5 present empirical strategies and results for diffusion and innovation 

analyses. Section 6 concludes. An online appendix contains additional results and information. 
 

2. Background and Conceptual Framework 
 

4 The MPP is closer to traditional, historical patent pools (i.e., with a small number of patent owners, not much 
ambiguity of who holds patent rights), compared to modern software pools.  
5 A summary of the MPP’s contribution to drug access in Covid-19: https://medicinespatentpool.org/covid-19  

https://medicinespatentpool.org/covid-19
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2.1 HIV and Drug Cocktails  
As one of the most significant infectious diseases in history, AIDS/HIV has killed more 

than 35 million people and infected over 70 million people globally since the 1980s. Today, 

AIDS remains a leading global cause of death, with almost two-thirds of the people living with 

HIV residing in Africa. Once a person is infected, HIV cannot be eliminated and can progress to 

AIDS that destroys the immune system and makes the patient vulnerable to opportunistic 

infections—a set of over 20 illnesses. AIDS remained a fatal disease and a leading cause of death 

until the mid-1990s when highly active antiretroviral therapy (HAART) was discovered. Death 

rates dropped nearly 85% within a few years. Left untreated, AIDS patients survive three years 

on average, and life expectancy drops to one year if an opportunistic infection strikes.  

 Despite the lack of a cure, daily HAART can turn HIV from fatal to a chronic disease. 

The HAART typically uses a cocktail of antiretrovirals from multiple drug classes based on the 

mechanisms of action that target HIV at different stages of its life cycle. A patient who cannot 

maintain medication adherence and develops resistance to a drug will be resistant to all drugs 

within the same class, and a patient may switch to a different regimen once a side effect becomes 

intolerable. In sum, HIV compounds are complements due to bundling and substitutes due to side 

effect-induced switching. Therefore, both new single-pill cocktails and new compounds can 

improve current treatment. The cocktail features also apply to therapies for cancer and Covid-19.  
 

2.2 Patent Pools and the Medicines Patent Pool (MPP) 
There is no universal design for patent pools. First used in 1856 to reduce litigations in 

the sewing machine industry, a typical patent pool involves patent holders sharing rights for joint 

licensing with members or firms outside of the pool, with licensing rules varying across pools. 

Patent pools were seen as exempt from regulatory scrutiny in the early twentieth century but 

almost disappeared after a 1945 US Supreme Court decision on cartel behavior.6 A pool can be 

dissolved by courts or it expires when all pool patents expire. Although not historically used in 

the medical sector, the prevalence and lack of cures for many infectious diseases and extensive 

patents provide a testing ground for the MPP to reduce intellectual property (IP) issues in health. 

The MPP aims to reduce coordination failure in the global medical supply chain, to spur 

generic access of patented drugs in developing markets, and to avoid infringement or compulsory 

 
6 Hartford-Empire Co. v. United States, 323 US 386 (1945); a case in the glass container industry.  
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licensing.7 The MPP negotiates with branded firms (i.e., patent holders) for drug licenses that 

enable generic firms to develop new treatments, including fixed-dose cocktails and pediatric 

formulations (Figure 2). Any improvements in production or formulation by licensees can be 

non-exclusively granted back to the original patent holders. Generic firms can license all territory 

patents on the set of drugs they need from the pool. Royalty rates are typically set at no more 

than 5% of revenue.8 The MPP receives quarterly drug development updates from licensees and 

encourages competition among generic firms that can bring down prices and increase access.  
 

 
Figure 2: Licensing Structure for the Medicines Patent Pool 

 

Notes: The figure is edited from MPP official material. The pool works as the intermediary between branded 
drug firms and qualified generic licensees. Royalties are normally capped at 5% of revenue and are often free. 

 
By 2017, the MPP provided eligible licensing for 10 compounds covering four of the six 

HIV drug classes, and four out of the nine branded HIV drug providers joined the pool.9 Figure 3 

shows the MPP sales territories; Appendix C reports a summary of MPP license terms. Generic 

drug industries are heterogeneous across developing countries, with major firms based in India, 

China, Brazil, and South Africa; sub-Saharan African countries lack local production and mainly 

rely on imports. To assure branded firms that the MPP aims to increase generic access in 

resource-limited countries, licenses cannot be used for drug sales in high-income countries.  

 
7 With compulsory licensing, a government allows producing a patented product or process without the 
consent of the patent owner.  
8 The 5% implicit cap is lower than the average US rate (5-8%, author’s calculation based on BioSciDB).  
9 As of early 2019, nine patent holders have pooled thousands of patents on 17 drugs. Excluded from the 
analysis are those that are not for HIV, pediatric-only licenses, and non-sue agreements.  
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(a) MPP overall effective sales territory 

 

 
(b) MPP representation in the diffusion data 

Figure 3: Geographic Penetration of the MPP: (a) Overall and (b) in the Diffusion Data 
 

Notes: Color groups represent the compound-year weighted intensity of MPP impact by 2017. Panel (a) 
includes all compound countries covered in the MPP sales territory, and panel (b) accounts for MPP 
compounds and countries included in my sample. Not all MPP-related compounds appear in the data, as many 
newer drugs need a few years to pass the registration, production, and distribution process.  
 

2.3 Conceptual Considerations 

Theoretical work shows that the static welfare effect of a patent pool depends on the 

relationship between patents in the pool (Lerner and Tirole, 2004): pools with complements will 

lead to lower license fees and are welfare enhancing, but pools with substitutes are anti-

competitive with collusive behaviors. In reality, substitution and complementarity patterns can 

be far more complex. First, consumers may buy a combination of products when prices are low, 

but only one product when prices are high, meaning patents are complements at low prices and 

substitutes at high prices (Lerner and Tirole, 2004; Rey and Tirole, 2019). Second, because firms 
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often develop cocktails composed of existing compounds, compounds within a drug class 

compete once a class is selected to complete a regimen (substitution), but compounds within the 

same cocktail complement each other (complementarity), and different cocktails compete 

(substitution). When a pool works as a price capping device (limits collusion, e.g., MPP’s 

implicit royalty cap), regardless of the relationship between patents, incentives are maintained to 

price low, and thus the static welfare of a pool are always weakly positive (Rey and Tirole, 2019). 

The impact of a pool on innovation is even more complex (Lerner and Tirole, 2004; Rey 

and Tirole, 2019). Innovation is more likely to increase in pro-competitive pools when the 

complementary effects dominate. This is because insiders increase innovation in anticipation of 

pool formation, while outside pool innovation may increase when firms can develop a new 

product that can be easily used in combination with others. These effects differ across drugs: a 

pool can lead to more innovation for products that combine well with the existing products in the 

pool, but less so for new products that may compete with the existing pool products. In a pool 

with substitutes, by contrast, innovation by outsiders may be reduced in the face of higher 

licensing fees. Beyond these simplified cases, the impact of pools on innovation is ambiguous 

and depends on the nature of strategic interactions, for example if incumbent producers lower 

prices to deter entry or if the firms engage in tacit collusion. It is also hard to draw a simple 

conclusion on the impact of pools on innovation given the complex substitution and 

complementarity patterns, especially as the same pair of drugs may be complements within one 

treatment regimen but substitutes across competing treatment regimens. Overall, my empirical 

results on R&D are consistent with the literature and are discussed in detail in section 5.  

Below, I further discuss how three types of firms interact with the MPP with different 

incentives: generic firms, branded firms in the pool, and institutions outside the pool. Generic 

firms can use the MPP to overcome IP-related barriers (e.g., patents and exclusivities).10 High 

royalties of patented compounds may deter generic firms from licensing, and thus they will exit 

the market or infringe patents and face costly litigations. If a generic firm has two compounds 

but needs a third, patented compound to develop a new single-pill cocktail, this process can be 

held-up by the branded firm. In addition, downstream firms may be unwilling to negotiate with 

 
10 Exclusivities also hinder drug diffusion and R&D (Gaessler and Wagner, 2019). Most MPP licenses also 
include transfer of know-how but not market exclusivities. For firms that sell in countries without granted 
patents, there can be pending patents. Licensing is always a safe option with limited information. 
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branded firms to license patents on multiple new compounds for sales in different countries. The 

royalty negotiation process can be costly for branded and generic firms. A generic firm that pays 

multiple royalties can use its downstream market power in the absence of generic competitors. 

The MPP makes licensing easier, reduces royalty rates, and avoids patent litigations.  

At the same time, branded firms in the MPP can benefit from simplified licensing and the 

royalty negotiation process, use the pool to monitor licensee compliance, and choose to license 

back patentable improvements developed by the licensees.11 Many branded firms are proactive in 

advancing drug access in developing countries, but shy away from the difficulties of setting up 

sales networks in those countries. In fact, branded firms can gain more profit from low-income 

markets by generic licensing instead of selling directly.12 As a result, branded firms may increase 

R&D in technically feasible trials that adapt to the needs of developing country markets. 

However, branded firms may charge a low royalty rate to generic firms and lose out from IP 

sharing without prior evidence on MPP license compliance. A pool with price caps on royalty 

rates can be pro-competitive even with substitutable technologies, but how firms would behave is 

ambiguous in theory and requires empirical work (Rey and Tirole, 2019).  

In addition, a patent pool can generate spillover effects to upstream R&D-oriented firms 

outside the pool. MPP employees regularly present in conferences to disseminate information 

and communicate with scientists to encourage diffusion-oriented innovation. Inclusion in the 

MPP can indicate firms’ openness to IP diffusion, and thus lower the litigation risks to research-

oriented firms if results enter commercialization phase (Williams, 2013). This situation is similar 

to a patent commons (i.e., a pool with zero royalties) in open source software, where opening up 

IP can increase follow-on R&D and firm entry (Wen et al., 2015). Furthermore, follow-on 

innovation by pool outsiders can complement branded firms’ R&D by discovering new or better 

uses of approved drugs and by providing post-market surveillance. However, whether an access-

oriented pool can effectively engage with the research community is an open empirical question.  

 

3. Data 
3.1 Data on HIV Drugs and MPP Licensing Contracts 

 
11 A licensor can use licensee-developed patentable technology through an agreement or reverse licensing.  
12 Gilead planned to license to the MPP the blockbuster drug sofosbuvir, but the initial MPP mandate does not 
cover hepatitis C. According to the MPP, Gilead has to set up an access program for generic licensing of 
sofosbuvir in developing countries. See also Harvard Business School cases (# 9-510-029; 9-515-025). 
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I first collected data on all HIV drugs approved by the US Food and Drug Administration 

(FDA), including both standalone compounds and multi-compound drug cocktails. I obtained the 

data from the FDA and AIDSinfo.gov—a US government agency providing information on 

HIV/AIDS. I converted branded names to generic names to standardize the coding, as the same 

drug can have different branded trade names in different countries.13 I then collected details 

about the MPP from its official website and from licensing contracts. The timing of a compound-

country being included in the MPP is documented in the original contract and amendments.  

Table A1 displays key information on all HIV compounds approved by 2018. There are 

six drug classes for HIV therapy, including 30 distinct compounds (27 compounds by 2017) 

owned by 11 firms. Among them, the market leaders are Gilead Science and ViiV Healthcare 

(i.e., a joint venture of GlaxoSmithKline, Pfizer, and Shionogi). I report the FDA approval dates 

for each compound and MPP addition dates for associated compounds till the end of 2018.  

 

3.2 Drug Diffusion Data: Procurements, Patents, and Country-Year Controls 

HIV drug purchase records are from the Global Fund’s Price and Quality Reporting, a 

large-scale public dataset that records procurement transactions made by Global Fund-supported 

programs. The non-profit Global Fund is the world’s largest financier of health service programs 

for AIDS, tuberculosis, and malaria. Specifically, the Global Fund finances about 40 percent of 

all HIV drug purchases for low- and middle-income countries (LMIC).14 The implementation 

relies on within-country and international partners in government, non-profit, and private sectors, 

who report results to the Global Fund for monitoring purposes. My sample includes 29 HIV 

drugs involving 18 compounds purchased for 103 developing countries during 2007–2017. The 

raw data report the transaction date, the quantity of drugs purchased in various strengths and 

dosage forms, prices, selling firm, and destination country. I aggregate the raw data from 

purchasing records to create a country-drug-year level unbalanced panel dataset.  

To measure the diffusion of generic HIV drugs, the share of generic drug purchases in 

each drug-country-year is calculated. As a direct measure of generic diffusion and widely used as 

a generic efficiency measure in practice, higher generic share is a sufficient but not necessary 

 
13 All HIV drugs are approved in the US, the most lucrative market. Similarly, all clinical trials on new drug 
development (for US drug approval or academic publications) must be registered in the US.  
14 Source: Global Fund publication, 2016, available at https://tinyurl.com/y4dgwy3w.  

https://tinyurl.com/y4dgwy3w
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condition for lower prices, as the latter can be achieved by non-market strategies such as price 

ceilings and donations from branded firms. Generic share is an assumption-free measure that 

captures normalized generic utilization level. Specifically, I divided the number of purchases 

from generic firms by the total number of purchases for a drug within a country-year.15 Each 

drug-purchase is then converted into a standardized quantity in units of per US patient-day to 

calculate the share of generic drug quantity purchased at the drug-country-year level. Then, the 

number of distinct drug products—as a drug-strength-dosage form-firm combination—is 

calculated at the drug-country-year level as a proxy for within-drug market competitiveness. 

During the sample period, the average shares of generic purchases and generic quantities are 

84.3% and 85.6%, respectively (Table 1 Panel A).  

HIV drug-country-specific international patent data are obtained from two sources. First, 

I used data from the MPP’s own patent database, MedsPaL, which was created in collaboration 

with regional patent offices. This dataset provides the patent status by country of selected drugs 

using public data. Second, I acquired data on all available international patents on HIV drugs 

from the Drug Patent Watch database, following Galasso and Schankerman (2014). A drug is 

effectively patented if there are any active patents for that drug in the country-year.16  

Country-year level control variables are collected from two sources. First, the World 

Bank provided data on population, GDP per capita, and the widely-used institutional factors 

Worldwide Governance Indicators (WGI), which are six continuous measures of voice and 

accountability, political stability and absence of violence, government effectiveness, regulatory 

quality, rule of law, and control of corruption. Second, HIV prevalence and age-adjusted death 

rates are obtained from the Global Burden of Disease Study Life Tables from the Institute for 

Health Metrics and Evaluation and curated by Our World in Data from Oxford University.  
 

Table 1: Summary Statistics of Main Outcome Variables 
 

Variables Unit of obs. Obs. Mean Std. Dev. Min Max 

 
15 Last accessed in 8/2018. Price and quantity calculation requires more assumptions in converting drugs of 
same ingredients but different strengths that are not directly comparable. The conversion to a per-unit price 
relies on US adult dosing in the absence of LMIC country-specific data; quantity-adjustments are thus 
calculated to show robustness after the assumption-free share measure (Appendix A). Generic shares are the 
desirable reduced-form outcomes given the lack of all transaction data, right truncation, and inconsistent 
shipping cost inclusion. Robustness results also show direct price and quantity analyses.  
16 Due to data availability reasons, I cannot distinguish which types of patents are in effect for each drug in 
each of the 103 countries. Empirical results suggest that this control does not affect the main results. 
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Panel A: variables used in the diffusion analysis – cross-country panel analysis 
% generic orders (%) drug-country-year 7,084 84.31 34.47 0 100 
% generic quantity (%) drug-country-year 7,084 85.63 34.16 0 100 
# products drug-country-year 7,084 1.72 1.04 1 10 
% generic orders comp.-country-year 6,485 79.82 36.94 0 100 
% generic quantity comp.-country-year 6,485 82.07 36.75 0 100 
# products comp.-country-year 6,485 2.53 1.94 1 21 
Panel B1: variables used in the innovation analysis – clinical trials analysis 
# new trials comp.-year 540 10.08 13.24 0 67 
# firms in new trials comp.-year 540 20.73 28.53 0 165 
# new trials, MPP insiders comp.-year 540 2.41 3.27 0 17 
# new trials, MPP mix comp.-year 540 1.99 3.49 0 23 
# new trials, MPP outsiders comp.-year 540 5.68 7.89 0 44 
# firms in trials, MPP insiders comp.-year 540 3.15 4.53 0 36 
# firms in trials, MPP mix comp.-year 540 5.92 10.52 0 69 
# firms in trials, MPP outsiders comp.-year 540 11.67 16.80 0 113 
Panel B2: variables used in the innovation analysis – drug approval analysis 
# new approvals drug-year 798 0.70 1.63 0 14 
# new approvals, generic drug-year 798 0.61 1.60 0 14 
# new approvals, branded drug-year 798 0.09 0.42 0 6 
# new approvals comp.-year 378 2.28 4.02 0 32 
# new approvals, generic comp.-year 378 2.01 3.97 0 31 
# new approvals, branded comp.-year 378 0.27 0.72 0 6 
Panel C: summary of compounds covered in each sample  
MPP compounds: 2011: evg, ftc, tdf, cobi (joined as “the quad” cocktail); 2013: atv; 2014: dtg, taf; 
2015: lpv,r (joined as a bundle); 2017: bic (10 available for effective licensing; 6 from Gilead: the 
“quad”, taf, evg, among which 4 joined the pool one year before FDA approval: bic, cobi, evg, taf) 
Diffusion sample: 3tc, abc, atv, d4t, ddi, drv, efv, etr, ftc, idv, lpv, nfv, nvp, r, ral, sqv, tdf, zdv (18 
out of 27 compounds approved by the end of 2017; 23 compounds are in the raw data, 5 are dropped 
with <20 observations in data: dtg, enf, fpv, mvc, tpv); 29 drugs (standalone/cocktails) are covered. 
Innovation sample – clinical trials: 3tc, abc, atv, cobi, d4t, ddi, drv, dtg, efv, enf, etr, evg, fpv, ftc, 
idv, lpv , mvc, nfv, nvp, r, ral, rpv, sqv, taf, tdf, tpv, zdv (trials for all 30 compounds approved by 
2018; including 4 approved in 2012-2017 and 3 compounds approved in 2018: bic, dor, iba) 
Innovation sample – drug approvals: 27 compounds – all above except three approved only in 2018 

 
Notes: “Comp.” is short for compound. Panel A is for drug-country-year and compound-country-year level 
variables (2007-2017). Panel B1 is for compound-year level variables from HIV clinical trials (2000-2017). 
MPP insiders refers to branded firms participated in the MPP, MPP outsiders refers to non-MPP firms, and 
MPP mix indicates trials by a mix of MPP insiders and outsiders. Panel B2 is for drug-year and compound-
year level variables from FDA and WHO original drug approvals (2005-2018). For panel C, acronyms are used 
for readability and conciseness (Table A1 reports the full information). Three 2018-approved compounds are 
excluded in the drug approval sample as they only appear one time at the end of the panel; in contrast, the 
clinical trials data are available years before approval given the R&D life cycle of drugs.  
 

3.3 Drug Innovation Data: Clinical Trials, Drug Approvals, and Controls  
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R&D inputs are measured by clinical trials at the compound-year level from 2000–2017. 

I obtained clinical trials data from ClinicalTrials.gov, the US registry of global trials and a 

widely used source. The registry was first released in 2000 and is maintained by the National 

Library of Medicine (NLM) at the National Institutes of Health (NIH). I obtained identifiers 

provided by AIDSinfo of trials related to each FDA-approved HIV drug and pre-approval 

investigational drug. AIDSinfo, another NLM service, offers access to the latest federally 

approved HIV/AIDS medical information. I converted all branded drug names to their generic 

counterparts to unify the coding. About 10 new trials involving a HIV compound are initiated in 

a year, among which 4.4 trials are by branded firms in the MPP—2.4 trials in-house and two 

collaborated with firms outside the pool (Table 1 Panel B1). About 21 firms are engaged in these 

trials each compound-year, with a similar distribution pattern.  

R&D outputs are measured by HIV drug product approvals (branded and generic) from 

2005–2018 by FDA and WHO, the two largest agencies whose approvals can expedite related 

registration in many developing countries. The FDA approves HIV drugs via either the regular 

channel or the international program. I extracted all regularly-approved HIV drug products from 

Drugs@FDA; I obtained international program approvals via the US President’s Emergency Plan 

for AIDS Relief (PEPFAR).17 The two channels maintain the same safety, efficacy, and quality 

standards; the PEPFAR provides expedited reviews of generic drugs. The WHO pre-qualification 

program is the other main channel through which firms can fast register an approved, quality-

assured drug in many low-income countries. There are 0.7 approvals per drug-year and 2.3 

approvals per compound-year (Table 1 Panel B2), among which most approvals are for cocktails.  

US patent data are obtained from DrugBank, a database widely used in peer-reviewed 

research. The US patent status is closely tied with a drug’s owner perceived value, given that the 

US is the largest drug market. The data provider obtained compound-specific patent records from 

the FDA’s Orange Book and further undertook a manual curation process. I recorded the US 

patent status based on the effective patent period for each compound (i.e., before the last granted 

patent expires), and I then assigned drug-year level patent status accordingly.  

 

 
17 Source: https://www.fda.gov/InternationalPrograms/PEPFAR/ucm119231.htm. PEPFAR is for non-US 
marketed drugs and began in 2004. The Trade-Related Aspects of Intellectual Property Rights (TRIPS) 
agreement’s grace period for Indian generic firms ended in 2005.  

https://www.fda.gov/InternationalPrograms/PEPFAR/ucm119231.htm
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4. Patent Pool and Generic Diffusion of HIV Drugs  
4.1 Empirical Strategy 

To estimate the causal impact of the MPP on generic drug diffusion, I first define a drug 

“as it is”—either a standalone compound or a fixed-dose single-pill drug cocktail. Pool inclusion 

timing is coded based on compound-level inclusion into the pool, as a compound is the lowest-

level unit for standalone and cocktail drugs alike. I exploit variation in the timing of compound-

country additions to the pool and estimate the difference-in-differences model as follows.  
 

𝑦𝑑𝑐𝑡 = 𝛿𝑑𝑐 + 𝛿𝑡 + 𝜷𝑀𝑃𝑃𝑑𝑐𝑡 + 𝛾̃𝑋̃𝑐𝑡 + 𝜂𝑋𝑑𝑐𝑡 + 𝜀𝑑𝑐𝑡          (1) 
 

Here, 𝑦𝑑𝑐𝑡 is an outcome variable aggregated to the drug-country-year level, including the share 

of generic purchases of a drug, the quantity-adjusted generic shares, and the number of distinct 

products purchased for a drug in a country-year. 𝑀𝑃𝑃𝑑𝑐𝑡 is an indicator for whether a drug 𝑑 has 

any compound included in the MPP in country 𝑐 in year 𝑡. I also examine another 𝑀𝑃𝑃𝑑𝑐𝑡 

measure using the share of MPP compounds in a drug for a country-year 𝑐𝑡. The variable 𝑋𝑑𝑐𝑡 

controls whether any effective patents on drug 𝑑 exist in country 𝑐 for a given year 𝑡.  

Each regression contains fixed effects for drug-country pairs (𝛿𝑑𝑐) and year (𝛿𝑡) to 

account for differences between drug-countries and years, respectively. The drug-country fixed 

effects capture differences in unobserved factors that correlate with the generic share of a drug in 

a country that are not recorded in observable data, such as response rate, resistance rate, and 

expected profit for each drug in each country. 𝑋̃𝑐𝑡 contains a set of observed country-year level 

control variables, including institutional factors, HIV prevalence and death rates, log population, 

and GDP per capita.18 Standard errors are two-way clustered at country and drug levels to allow 

for arbitrary autocorrelation within a country and a drug (Cameron et al., 2011).19 

There are two identifying assumptions: common trends and lack of common shocks. I test 

the former using an event study model, and I support the latter by elaborating on why the data 

generating process is driven by factors arguably orthogonal to the outcomes of interest. The 

event study framework assesses the validity of the common trends assumption that the trend in 

the control group (drug-country-years outside the MPP) is a valid counterfactual for the treated 

 
18 The institutional factors are the six worldwide governance indicators described in the data section. I also use 
country-year fixed effects instead of observable controls as a specification test (robust).  
19 Estimated standard errors are smaller using other clustering methods at the country or country-drug level.  
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group (drug-country-years in the MPP). Differential trends of outcome variables between the 

treated and control groups in the pre-treatment period would suggest endogeneity in drug-

country inclusion or, potentially, correlation with other shocks. In addition, the event study 

measures the dynamic responses of outcomes to policies—whether the effects fade away or build 

over time. The MPP impacts could build up (because diffusion takes time) and diminish over 

time since the dependent variable is bounded by 100%. I estimate event study models as follows:  
 

𝑦𝑑𝑐𝑡 = 𝛿𝑑𝑐 + 𝛿𝑡 + ∑ 𝜷𝒋𝑗∈𝑇 1 {
𝑀𝑃𝑃 𝑒𝑣𝑒𝑛𝑡

𝑡𝑖𝑚𝑒𝑗
}

𝑑𝑐𝑡
+ 𝛾̃𝑋̃𝑐𝑡 + 𝜂𝑋𝑑𝑐𝑡 + 𝜀𝑑𝑐𝑡.       (2) 

 

Here, 𝛽𝑗 represents the difference between treated and control outcomes 𝑗 years relative to the 

MPP inclusion. For drug cocktails that have multiple compounds, I define the event time as years 

relative to when any compound was first included in the pool.  

Next, I describe the data generating process to support the lack of common shocks 

assumption. First, evidence suggests that drugs in and outside the pool appear similar in quality 

(e.g., approval year, initial sales). The US approval dates are similar for drugs in and outside the 

pool (Table A1); six compounds are listed in the top 100 drugs by global sales in 2012, and three 

of the six compounds are in the MPP (Table D3). The set of drugs entering the pool is affected 

by firm attitudes towards licensing and randomness in negotiation outcomes, both of which are 

likely to be orthogonal to unobservables affecting generic shares of drugs across LMIC. In fact, 6 

out of the 10 effective compounds were contributed by Gilead during my sample period, all they 

have owned, and the additions are either in blocks or at the earliest time possible (esp. for pre-

approved drugs). Although the MPP may check the WHO Essential Medicine List on marketed 

drugs, many pre-approval drugs are added to speed up access.20 Two other compounds are 

owned by AbbVie, which also contributed all their available HIV drugs. Table B4 shows similar 

results on subsets of drugs by pharmacological, regulatory, ownership and cohort features.  

 Second, drug-specific MPP sales territories typically vary by branded firm and always 

include sub-Saharan Africa and Djibouti; additional inclusion of countries partly depends on 

income groups, prior voluntary licensing status, and exercises in public relations.21 When 

 
20 The WHO list includes all approved HIV drugs except three pre-2000 withdrawals and are all of high market 
values. The MPP broadly target any HIV drugs in early years to demonstrate the business model.  
21 Based on discussions with MPP employees in Switzerland. A firm may follow the World Bank “low-
income” definition or use its own cut-off value for income. A firm once included one island country (with a 
long name) into the MPP territory but listed two country names to boast public relations. Another firm 
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initially adding a drug, branded firms typically include over 90 countries in the MPP territory, 

and rarely add more countries later. Thus, territory decisions are not likely driven by temporary 

country-specific demand shocks that can induce higher generic supply without the pool. In many 

cases, firms had already issued bilateral generic licensing and voluntary free licensing before the 

MPP was established, and countries in pre-existing licenses are typically also included in the 

initial MPP territory (Juneja et al., 2017). This situation can bias my estimates towards zero. In 

addition, the control variables account for the country-year level differences over time in HIV 

death rates, HIV prevalence, population, income, and institutional factors that are related to the 

demand and distribution for the drug. The outcomes in percentages further account for supply-

side factors, because overall demand increases will affect both generic and branded drugs.  

 Third, the timing of when a drug-country is eligible for MPP licensing is partly affected 

by negotiation time and scientific discovery. The negotiation time vary by firms’ attitudes and 

administrative efficiencies. For example, MPP approached both Gilead and Janssen in 2010. 

Gilead used generic licensing years before the MPP was established, joined in 2011, and has 

gradually put all HIV drugs into the pool, including two investigational drugs in clinical trials. In 

contrast, Janssen has never officially joined the MPP.22 While I cannot perfectly determine what 

drives entry and when it happens, it is unrelated to factors that are most likely to cause a bias. To 

show this, I regress the MPP indicator on observables related to demand, demographics, income, 

institutional factors, and fixed effects at drug-country and year levels. As shown in Table B1, 

none of the key observables are significant predictors of the timing, and the goodness of fit 

barely increases when adding observables to the regression.23 Empirical tests and institutional 

knowledge indicate that the timing is driven by factors orthogonal to my outcomes of interest.  

Furthermore, the smallest treatment unit is at the compound level, while each purchase is 

at the drug level: as a standalone compound or a drug cocktail. As a robustness check for 

measurement error, I estimate a compound-country-year level model where drug cocktails are 

converted into compounds. This model is estimated using equation (1) but on compound-

 
unintentionally left a sub-Saharan African country outside the MPP territory and added it once been reminded. 
These factors are orthogonal to changes in my outcomes of interest.  
22 Janssen agreed on a covenant not to sue without commitment in technology transfer or licensing, unsure 
whether the MPP model would work [interview with Frank Daelemans].  
23 Figure B1 depicts trends of HIV death rates and prevalence (no spikes). Civil society advocacy and 
compulsory licensing threats for the inclusion of additional countries into the MPP are typically outside my 
sample periods and can affect the control group, making it harder to estimate an MPP impact.  
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country-year (𝑦𝑎𝑐𝑡) aggregated data, with fixed effects at the compound-country and year levels. 

It’s worth noting that while it is natural to expect that the inclusion of a compound in the MPP 

can increase generic drug diffusion, it is not obvious whether such inclusion has a statistically 

positive and economically meaningful impact, and how the effect size varies across measures. 

Finally, despite extensive evidence for the lack of common shocks, there may still be aspects of 

firms’ pool participation decisions that are related to unobservables affecting diffusion. This is a 

potential limitation of the identification strategy, though I provide evidence later that any bias 

from selection is likely to be small.  
 

4.2 Does the MPP Foster Diffusion of Affordable Generic Drugs? 

The main results from the drug-country-year analysis indicate that the MPP increases 

generic shares (Table 2). Column (1) controls for fixed effects at drug-country and year levels; 

columns (2)–(3) add controls at country-year and drug-country-year levels, respectively.24 

Coefficient estimates are stable across columns. The results indicate that adding a drug-country 

to the MPP increases the share of generic purchases of this drug in the country by about seven 

percentage points (Panel A) – a substantial increase given the already high generic coverage in 

developing countries (84% on average during my sample period). Columns (4)–(6) report results 

using the share of generic quantities purchased as outcomes. Estimates are similar in magnitude 

and precision to those in columns (1)–(3), and are stable across specifications. Estimates on the 

number of drug products purchased are positive, although statistically insignificant (columns 7-

9). This result suggests that generic share increases mainly in existing products, and does not yet 

lead to a substantially more diversified purchase set. This is consistent with the idea that 

countries do not purchase all products on the market, but can still benefit from competition-

induced price reductions in the choice set. The lack of power prevents more specific conclusions. 

 The results are robust to using alternative measures of the MPP variable: the share of 

MPP compounds over total number of compounds for a drug in a country-year (Table 2 Panel 

B). The results are qualitatively similar to the indicator measure and slightly larger in magnitude. 

I mainly focus on the indicator measure below, as it captures the most salient changes at the 

extensive margin, and because of straightforward interpretation.  
 

 
24 Because comprehensive global patent data are hard to obtain (Lerner & Seru, 2017), I demonstrate the 
robustness of my results across specifications with and without the drug-country-year patent control.  
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Table 2: MPP and Generic HIV Drug Diffusion in LMICs 
 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) 
Dept. Vars. % generic orders (#) % generic quantities (patient-year) # products (strength-dose-firm) 

Panel A: Drug-Country-Year Analysis, 𝑀𝑃𝑃𝑑𝑐𝑡  as {0, 1} dummy 
𝑀𝑃𝑃𝑑𝑐𝑡  6.888** 7.223** 7.226** 6.653** 7.003** 7.010** 0.0739 0.0719 0.0717 

(3.178) (2.933) (2.932) (3.035) (2.802) (2.796) (0.113) (0.104) (0.104) 
 [2.712] [2.706] [2.707] [2.725] [2.717] [2.715] [0.0812] [0.0800] [0.0798] 
Panel B: Drug-Country-Year Analysis, 𝑀𝑃𝑃𝑑𝑐𝑡  as % of MPP compounds 

𝑀𝑃𝑃𝑑𝑐𝑡  7.154** 7.403** 7.409** 6.916** 7.183** 7.194** 0.0929 0.0939 0.0937 
(3.270) (2.983) (2.984) (3.123) (2.858) (2.857) (0.124) (0.113) (0.112) 

 

drug-country & 
year FEs 

[2.870] [2.851] [2.853] [2.870] [2.858] [2.859] [0.0874] [0.0850] [0.0848] 
Y Y Y Y Y Y Y Y Y 

Xct control 
 

Y Y 
 

Y Y 
 

Y Y 
Xdct control 

  
Y 

  
Y 

  
Y 

LHS mean 84.3 84.3 84.3 85.6 85.6 85.6 1.7 1.7 1.7 
Observations 7,084 7,084 7,084 7,084 7,084 7,084 7,084 7,084 7,084 
Panel C: Compound-Country-Year Analysis 

𝑀𝑃𝑃𝑎𝑐𝑡 9.576** 9.977** 10.12*** 10.09*** 10.42*** 10.55*** 0.156 0.140 0.132 
 (3.708) (3.493) (3.487) (3.369) (3.248) (3.261) (0.193) (0.185) (0.186) 
 

comp.-country & 
year FEs 

[3.088] [3.050] [3.076] [3.227] [3.204] [3.226] [0.115] [0.114] [0.110] 
Y Y Y Y Y Y Y Y Y 

Xct control  Y Y  Y Y  Y Y 
Xact control   Y   Y   Y 
LHS mean 79.8 79.8 79.8 82.1 82.1 82.1 2.5 2.5 2.5 
Observations 6,485 6,485 6,485 6,485 6,485 6,485 6,485 6,485 6,485 

 

Notes: This table reports the results of estimating Equation (1). “Comp.” is short for compound. Each cell 
reports the coefficient of interest from a separate regression. Coefficient estimates for the treatment variables 
𝑀𝑃𝑃𝑑(𝑎)𝑐𝑡 are reported across three measures across panels. The specification controls for drug (compound)-
country-year level effective patent status and country-year level observables. Robust standard errors two-way 
clustered at the drug (compound) and country levels and are reported in (). Robust standard errors clustered at 
the country level are reported in []. Two-way robust p-values: *** p<0.01, ** p<0.05, * p<0.1.  
 

The event studies support the above results (Figure 4). No pre-trends exist that violate the 

identifying assumptions. The lack of pre-trends is particularly clear for the outcomes of generic 

share and quantity-adjusted generic share. The post-period trends for these outcomes rise from 

zero, consistent with the significantly positive average treatment effects estimated, despite the 

lack of power to estimate precisely the impact for each post-period. The effects gradually build 

and stabilize over time, consistent with time varying treatment effects that take time to establish, 

which are then bounded by 100%. The event study for product variety shows a similar pattern.  
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The compound-country-year analysis further supports my main results with more precise 

estimates, after converting drug cocktails into compounds (Table 2 Panel C). In the full sample, 

adding a compound in the pool increases generic shares (raw and quantity-adjusted) about 10% 

across specifications, and the estimates are significant at the 1% level. The estimates from the 

product variety regressions are larger in magnitude than those in the drug-country-year results, 

but similarly are not statistically significant at conventional levels. Overall, there are no pre-

trends from the event studies for the outcomes of interest (Figure 4). The post-period increases in 

the share of generic drug purchases and quantities are clear and significant.  
 

 
(a) Drug-Country-Year Panel 

 
(b) Compound-Country-Year Panel 

Figure 4: Event Studies for Diffusion Analysis 
 

Notes: These figures report event-study coefficient estimates using Equation (2). The units of observation for 
panel (a) and (b) are at drug-country-year (dct) and compound-country-year (act) levels, respectively. The 
whiskers correspond to 95% confidence intervals.  
 

An alternative specification is tested that includes a full set of country-year level fixed 

effects (Table B2). Country-year level observable controls are dropped in this specification due 

to collinearity. The country-year level fixed effects account for the differences between each 

country-year to capture unobserved demand or institutional shocks that occurred in a country-
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year not captured by the feasible observable controls. For example, changing legislative culture 

towards drugs, the overall likelihood of compulsory licensing, and activist activities – old 

country-specific channels that widely existed before the MPP’s establishment but still have 

limited impact. All of the coefficient estimates are very similar in magnitude and statistical 

significance to those in the preferred main specification.25 

 

4.3 Heterogeneity, Robustness Checks, Sensitivity Tests, and Bacon Decomposition 

To demonstrate robustness regarding country territories in the control group, a set of tests 

are reported using alternative definitions (Table B3). Some countries are more experienced in 

bringing generic drugs via traditional channels like patent invalidation and challenges that are 

independent to the MPP’s establishment. Others (e.g., sub-Saharan Africa) are waived from 

patent enforcement but lack local production capacity and rely on international trade and other 

firms’ incentives to sale in their territory. Although these concerns are addressed by the previous 

test, a subsample analysis further supports that the pool makes an impact even in areas with the 

most lenient access policies. The estimated impact is smaller (i.e., 5 percentage point) in MPP-

common territories for all drugs (47 countries: sub-Saharan Africa and Djibouti) and larger (i.e., 

7.5 percentage point) in the territories ever covered by any MPP drugs (92 countries).  

A similar idea applies to a test including different drugs in the control group to strengthen 

the main results (Table B4). Column (1) focuses on the first ever MPP addition of compounds 

and drugs in the same classes as these compounds. The first MPP addition is more likely to be 

unanticipated as this process is unprecedented. Column (2) drops drugs in the drug class without 

any MPP inclusion by the end of the sample period. Column (3) drops drugs with any of the four 

toxic compounds that are no longer recommended in the US but are still widely used in LMIC. 

Column (4) drops drugs approved before 1996, the year the oldest MPP compound was approved 

in the US. Column (5) keeps only drugs developed by branded firms inside the MPP. The results 

are robust in all cases and support that the estimates are not sensitive to control drug choices.  

The estimated MPP impacts differ in subsamples that vary by patent status (Table B5). 

As discussed, the MPP’s impact is expected to be stronger in countries in which a drug is 

 
25 I also test a specification with a set of drug-year fixed effects. The MPP estimates are insignificant and 
smaller in magnitudes. The lack of power with three sets of fixed effects is expected as compounds enter the 
pool for 47-92 countries at a time (e.g., Table B3) and drug-year fixed effects absorb treatment effects.  
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patented because a firm considering launching a generic drug in that country needs to secure a 

license (or licenses) or risk a lawsuit. Countries without patents can also benefit from the MPP 

through spillover effects, such as enhanced international trade. The results match the prediction 

that across specifications and measures, the share of generic drug orders increases more in 

countries where a MPP compound was effectively patented. The MPP estimates are similar when 

using quantity-adjusted generic share as the outcome variable. Similar to the baseline case, the 

impact of MPP inclusion on within-drug product varieties is statistically insignificant.  

The above analyses all support the hypothesis that the MPP works as a novel institution 

to increase generic utilization. Additional analyses are provided using calculated price and 

quantity measures (Table B6).26 For completeness and to account for outliers, I report the results 

from responses in both log(prices) and log(quantities) for each of overall sales, generic sales, and 

branded sales. The overall price reductions are mostly driven by price reductions in generic 

drugs (35%), and the corresponding generic quantity supplied rises by 71% (i.e., more patient-

years served). The results are statistically significant at the 1 percent level. This robustness check 

is consistent with the main result that the MPP effectively increased sales of generic drugs.  

In addition, I investigate heterogeneous treatment analysis using new methods developed 

(De Chaisemartin and d'Haultfoeuille, 2020; Goodman-Bacon, 2021). In this setting, as in many 

other cases, the MPP treatment is staggered over time in a multi-treatment group DD setting. 

Drug-country pairs that enter the MPP later (earlier) serve as control groups for those that enter 

the pool earlier (later), and drug-country pairs that never joined the pool during the sample 

period can serve as control groups. The Bacon decomposition helps disentangle how much of the 

estimated effect results from timing and these different control groups (“Timing” groups) as 

compared to a simple, “clean” control group where drug-country pairs are not in the MPP over 

the entire sample period (“Never vs. Timing”). Most of the estimated treatment effects (88-90%) 

in the diffusion analysis stem from a comparison of treated unit with classic control units (Table 

B12, Figure B8), with treatment magnitudes similar to the average treatment effect estimates.  

Furthermore, Roth’s (2022) approach is implemented to investigate how well-powered 

the event study test is in my context by calculating the size of the potential biases. Table B13 

reports the largest potential biases I cannot detect for key outcomes under 50% and 80% power. 

The largest potential biases are much smaller than the estimated effects using conventional 

 
26 In the main analysis, generic shares are used as main outcomes for reasons mentioned in section 3.2.  
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clustering (as in Cockburn et al., 2016) but are sizable using two-way clustering that tend to 

inflate the standard errors (Abadie et al., 2017). I then explicitly model differential pre-trends à la 

Greenstone and Hanna (2014) and Dobkin et al. (2018) with differential linear pre-trends for 

treated and control units and re-estimate both the treatment effects and the parameterized event 

studies (Table B14). Regarding biases, the average treatment effect estimates are very close to 

the benchmark and even sometimes larger, mitigating concerns of biases from under-powered 

pre-trends. Regarding efficiency, my sensitivity analyses results show sufficient evidence that 

the effects are significant under various clustering methods. Overall, pre-trends are not a concern 

to the diffusion results, as the results remain robust when directly accounting for pre-trends.   

In sum, the MPP is estimated to increases generic access in LMIC, and the direct impact 

is robust to alternative specifications, measures, and subsamples consisting of different control 

groups. However, it is ex ante unclear how firms react to the MPP indirectly in upstream R&D.  

 

5. Patent Pool and Innovation in HIV Drugs   
5.1 Drug Innovation Process: Clinical Trials and Drug Approvals 

R&D inputs are measured using all trials initiated in 2000–2017 that include HIV drug 

compounds. Before a new drug is marketed by a branded firm, it typically undergoes three 

phases of trials. Phase I usually tests drug safety in multiple doses on healthy volunteers. Phase II 

tests drugs on patients with the targeted disease to assess efficacy and side effects. Phase III 

studies a drug’s efficacy and safety on a large scale versus a control drug. Phase IV involves 

post-market surveillance to monitor drug use and long-term effects. Follow-on trials of drugs that 

were already approved can skip phase I-II.27 After Phase III, a branded firm can submit a new 

drug application to the FDA, which decides whether to approve the drug and at what strength 

and dosage forms.28 Generic drugs typically enter the market after the expiration of patents and 

market exclusivity, with exceptions.29 Generic firms are not required to conduct trials as long as 

they provide sufficient evidence on the generic drug’s bioequivalence to the reference drug.  

 
27 With toxic drugs, HIV trials often replace healthy volunteers with patients, reduce three phases to two, and 
use surrogate endpoints (e.g., viral load) instead of mortality. A trial can take several months to years. About 
10% of HIV trials do not record phases, when phases are not applicable or for behavioral trials.  
28 Drugs for life-threatening diseases are eligible for fast review (i.e., a decision within six months). The FDA 
posted a few examples: https://www.fda.gov/forpatients/illness/hivaids/treatment/ucm118915.htm.  
29 Generic firms can submit drug applications before the reference drug’s patent expires through the FDA’s 
tentative approval or international program, via a patent challenge, or via WHO pre-qualification.  

https://www.fda.gov/forpatients/illness/hivaids/treatment/ucm118915.htm
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5.2 R&D Reactions in Clinical Trials: Empirical Strategy & Results  

5.2.1 Empirical Strategy 

The identification argument is similar to that discussed in the diffusion part (section 4.1). 

As a diffusion-oriented pool, the MPP is not designed to change R&D except via encouraging 

incremental R&D to make better use of existing compounds, e.g., new formulations and single-

pill cocktails that suit the LMIC market. The timing of new compound additions is uncertain at 

the aggregate level. I discuss potential concerns and why this entry process is orthogonal to my 

outcomes of interest. I then examine R&D behaviors across firm types by MPP-affiliation. The 

focus is on reactions from firms outside the MPP and I do not claim causality for MPP insiders, 

as it is not feasible to disentangle planned and reactive behaviors.  

I estimate a difference-in-differences model that exploits when a compound is added to 

the MPP to examine changes in R&D activities involving that compound over time:30 
 

      𝑦𝑎𝑡 = 𝛿𝑎 + 𝛿𝑡 + 𝛽𝑀𝑃𝑃𝑎𝑡 + 𝛾𝑋𝑎𝑡 + 𝜀𝑎𝑡  .            (3) 
 

Here, 𝑦𝑎𝑡 is an outcome at the compound-year (𝑎𝑡) level, including the number of new trials, the 

number of participating firms, and the previous two outcomes stratified by MPP-affiliation, 

phase, and funding source. 𝑀𝑃𝑃𝑎𝑡 indicates whether a compound at time 𝑡 was in the MPP. Each 

regression contains fixed effects for compound (𝛿𝑎) and year (𝛿𝑡). 𝑋𝑎𝑡 controls for compound-

year level observed differences, such as whether compound 𝑎 was FDA-approved and whether 

the compound is US-patented in year 𝑡. Standard errors are clustered at the compound level. 

The two identifying assumptions are similar to those in the diffusion analysis, common 

trends and lack of common shocks, with two minor differences. First, the unit of analysis is at the 

compound-level to match innovation measures. Second, factors affecting innovation likely differ 

from those affecting diffusion. To empirically justify the first identifying assumption regarding 

common trends, I estimate corresponding event studies using the following equation:  
 

𝑦𝑎𝑡 = 𝛿𝑎 + 𝛿𝑡 + ∑ 𝛽𝑗𝑗∈𝑇 1 {
𝑀𝑃𝑃 𝑒𝑣𝑒𝑛𝑡

𝑡𝑖𝑚𝑒𝑗
}

𝑎𝑡
+ 𝛾𝑋𝑎𝑡 + 𝜀𝑎𝑡 .      (4) 

 

Here, 𝛽𝑗 denotes the difference between treated and control units 𝑗 years relative to pool addition. 

The event window is set as 6 years before and 4 years after the event for reasonable sample sizes.  

 
30 Following trial identifiers provided by AIDSinfo, trials covering multiple compounds are counted once for 
each compound. This logic is consistent with how Finkelstein (2004) defines disease-year trials.  
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The process of innovation and the pool design are inconsistent with common shocks that 

would bias the results. One concern is that the MPP may target and obtain compounds that are 

likely to generate follow-on innovation. In practice, the MPP has fewer than 20 employees, 

focuses on drug access rather than R&D, and is not likely to have superior data on the value of a 

compound than HIV scientists and private firms. The clinical value of a compound is typically 

unclear until phase III completion, and the market value is validated by FDA approval and US 

patents. Most compounds in the pool are approved and have been marketed for years.31 Overall, 

compounds in and out of the pool are roughly of similar quality as described in section 4.1.  

Another concern is that firms may be making decisions regarding when to enter the pool 

compound-by-compound in response to expected future value. However, it is theoretically 

ambiguous how a non-profit patent pool with imperfectly complementary drugs would affect 

R&D (Rey and Tirole, 2019).32 Empirically, the data and my interviews suggest that branded 

firms are not making sophisticated compound-level decisions. For example, Gilead contributed 

all the six HIV compounds it owned to the MPP by 2018. The first four entered in 2011 shortly 

after the pool approached Gilead, and the other two were added at the earliest possible.33 Another 

firm almost contributed all its drugs but did not due to a CEO change.34 Hence, experience 

indicates that compound-level unobserved factors that make R&D more attractive do not 

necessarily increase the likelihood of a compound entering the pool. As the first pool on drug 

access in LMIC, most of the negotiations with branded firms are diffusion-oriented.  
 

5.2.2 Do Firms Invest More in Compounds that entered the MPP?  

I find that firms respond to MPP compound addition with more follow-on clinical trials 

(Table 3 Panel A). Column (1) indicates that the number of new trials on drugs including a given 

compound increases by 9.9 trials after MPP compound addition, close to the mean annual trial 

rate for a compound during the sample period. The initial estimate is significant at the 5% level 

but loses statistical significance once controlling for observables. Nevertheless, the coefficient 

 
31 The results are similar when excluding two Gilead investigational drugs entering the MPP pre-approval.  
32 The theoretical setting is closest to section 4.2.3 and Figure 4 in Rey and Tirole (2019). The impact of a pool 
(with complements, price caps, and licensing outside the pool) on firm behaviors is ambiguous.  
33 The first four compounds (a cocktail) entered in 2011 are approved by US FDA in 2001, 2003, 2012 (for 2), 
respectively. The fact that Gilead did not distinguish compounds by age, class, and other factors reduces the 
concern of endogenous timing for R&D and supports the key focus on diffusion.  
34 According to the MPP administrators, the timing of inclusion for other firms is mostly affected by firm 
leadership and administrative efficiency. Also see related discussion and anecdotes in section 4.1.  
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magnitude remains close to the original estimate. FDA approval has a significantly positive 

association with follow-on trials, while patent status does not have a significant impact. Results 

in column (4) indicate that branded firms inside the MPP collectively choose to initiate 1.6 more 

trials with MPP-related compounds, significant at the 10% level. Similarly, column (8) indicates 

that MPP outsiders collectively increase trials that include MPP-related compounds, significant 

at the 10% level. Estimates from insider-outsider partnered trials are not statistically significant.  

The results are qualitatively similar when using the number of firms that participated in 

trials as the outcome (Table 3 Panel B). Coefficient estimates are positive but not statistically 

significant at the 5% level in specifications that control for observables. Dividing coefficients 

from Panel A by their counterparts in Panel B provides a proxy for new trials initiated per firm. 

The per-firm trial rate is about 0.9, 0.4, and 0.3 among insiders, outsiders, and mixed firms, 

respectively. The cross-column estimates are less stable among MPP insiders than outsiders, as 

branded firms react strongly to FDA approvals—when drugs can be marketed; instead, branded 

firms’ decisions to join the MPP are less clear and more likely experimentation to use this new 

business model for diffusion. Outsiders react more strongly to the MPP in total new trials, as the 

increased openness from the pool creates incentives for follow-on innovation given the lower 

costs, while the per-firm trial is smaller, as outsiders are typically smaller firms. Overall, the 

results suggest that firms, on the margin, react positively to the MPP in terms of follow-on trials. 
 

Table 3: Innovation Analysis - Clinical Trials: New HIV Trials & Firms Participated 
 

 Panel A: # new HIV clinical trials 
 (1) (2) (3) (4) (5) (6) (7) (8) 
Dept. Vars. # trials # trials: MPPinsiders # trials: MPPmix # trials: MPPoutsiders 

𝑀𝑃𝑃𝑎𝑡 9.925** 8.093 2.098** 1.625* 1.672 1.100 6.155** 5.368*  
(4.534) (4.831) (0.883) (0.859) (1.025) (1.051) (2.848) (3.084) 

LHS mean 10.08 10.08 2.367 2.367 1.915 1.915 5.794 5.794 
 

Panel B: # firms in new trials 
Dept. Vars. # firms # firms: MPPinsiders # firms: MPPmix # firms: MPPoutsiders 

𝑀𝑃𝑃𝑎𝑡 20.81** 17.75* 2.284** 1.747 5.366* 3.803 13.16** 12.20*  
(9.488) (10.28) (1.065) (1.072) (3.091) (3.226) (5.967) (6.454) 

LHS mean 20.73 20.73 3.104 3.104 5.754 5.754 11.87 11.87 
comp. & year FEs Y Y Y Y Y Y Y Y 
Xat control 

 
Y 

 
Y 

 
Y 

 
Y 

Observations 540 540 540 540 540 540 540 540 
 

Notes: This table reports the results of estimating Equation (3) at the compound-year level. Each cell reports a result 
from a separate regression. MPPinsiders: all trial participants are branded firms contributed to the MPP, MPPoutsiders are 
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trials by firms outside the MPP, and MPPmix denotes trials that are collaborated on by MPP insiders and outsiders. 
Robust standard errors are clustered at the compound level. Robust p-values: *** p<0.01, ** p<0.05, * p<0.1.  
 

The event studies support the estimates above (Figure 5). The event study for the number 

of new trials has no pre-trend but a clear post-period increase in new trial initiations, especially a 

few years after MPP entry. The next three event studies display results for the number of new 

trials by MPP-affiliation status. The pre-trends for MPP insiders, despite not significantly 

different from zero, are noisier than those for outsiders and insider-outsider mixed trials. All 

event studies involving MPP outsiders demonstrate a pattern of post-period trial increases with a 

3-4 years’ lag. Innovation tends to take longer to react than diffusion after pool inclusion, as 

preparing research, obtaining funding, and recruiting patient subjects in clinical trials often take 

longer than licensing and dissemination of existing products. There are also some heterogeneities 

across outcomes. As Figure 5 shows, trials initiated by insiders rise faster post-inclusion than 

those initiated by outsiders, as insiders have better access to information about the inclusion of 

drugs in the MPP. The event patterns are similar for the number of firms in new trials, and the 

post-period reactions are smoother and clearer in these cases, indicating that increases in post-

MPP trials from MPP outsiders are primarily driven by more firm participation.  

The R&D results are consistent with the theoretical literature (Shapiro, 2001; Lerner and 

Tirole, 2004; Rey and Tirole, 2019). Note that the drugs in the MPP are primarily complements 

(e.g., compounds used in cocktails), even though they can sometimes be substitutes. Firms 

developing drugs that can be used in conjunction with MPP-included compounds now have a 

stronger incentive to innovate, since demand for these new drugs will be higher (due to 

complementarity), and this dominates the negative effect of increased competition from MPP 

substitutes. Since many of the innovation activities are follow-on trials to expand the use of a 

compound, MPP insiders may not want to increase such innovation by as much (since their rents 

from the new patents are lower, with MPP inclusion), but outsiders do as they can earn much 

larger rents from the patents. Instead, MPP insiders can shift time and resources into developing 

new cocktails or new compounds that can further complement existing drugs (see sections 5.2.3-

5.2.4) and rely on outsiders to exert comparative advantage in follow-on innovations (e.g., new 

formulations, off-label use, new patient population).  
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Figure 5: Event Studies for Innovation Analysis: New Clinical Trials and Firms Participated 

 

Notes: The dots are point estimates of differences in outcomes between treated and control groups 6 years 
before and 4 years after MPP inclusion. The whiskers correspond to 95% confidence intervals. 
 

5.2.3 Heterogeneous Effects on R&D Reallocation and by Funding Status  

Across phases, firms respond to the MPP by starting more late-stage trials (Table 4). One 

would not expect the MPP to substantially affect phase I trials as these compounds are already 
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tested for safety (except for new doses). Firms are more likely to invest more in phase III trials 

for new or better drugs based on existing compounds. Panels A–D report results across phases I–

IV. Results are not statistically significant for trials in phase I-II. The increases in new trials and 

firm participation for phase III trials are significant at the 1% level. Event studies in Figure B2 

justify the results for phase III trials except for fully in-house trials by MPP insiders. Notably, 

MPP insiders reduce phase IV post-market trials by about 0.4 per compound-year, with about 0.5 

fewer firms participating, significant at the 5% and 1% levels, respectively. This reduction does 

not affect overall new phase IV trials, as the reduction is offset by firms outside the pool doing 

more phase IV trials (in-house or jointly with pool insiders). Event studies support this point.  
 

Table 4: Innovation Analysis - Clinical Trials: HIV Trials by Phase 
 

  (1) (2) (3) (4) (5) (6) (7) (8) 
Dept. Vars. # New HIV clinical trials # Firms in new HIV clinical trials  

total MPPinsiders MPPmix MPPoutsiders total MPPinsiders MPPmix MPPoutsiders 
Panel A. Phase I 

𝑀𝑃𝑃𝑎𝑡 1.114 -0.0388 0.168 0.986 2.314 -0.0325 0.525* 1.822 
(0.866) (0.135) (0.108) (0.778) (1.693) (0.211) (0.279) (1.449) 

LHS mean 1.352 0.331 0.144 0.876 2.306 0.539 0.363 1.404 
Panel B. Phase II 

𝑀𝑃𝑃𝑎𝑡 0.925 0.466 -0.134 0.593* 1.120 0.527 -0.524 1.117* 
(0.646) (0.290) (0.131) (0.312) (1.120) (0.360) (0.370) (0.596) 

LHS mean 1.909 0.530 0.261 1.119 3.704 0.672 0.889 2.143 
Panel C. Phase III 

𝑀𝑃𝑃𝑎𝑡 3.374*** 1.945*** 0.0680 1.361** 4.585** 2.122*** -0.132 2.594* 
(1.066) (0.569) (0.192) (0.503) (1.862) (0.657) (0.565) (1.331) 

LHS mean 2.885 1.141 0.446 1.298 5.970 1.376 1.402 3.193 
Panel D. Phase IV 

𝑀𝑃𝑃𝑎𝑡 1.325 -0.385** 0.614 1.096 4.539 -0.481*** 2.435 2.585 
(1.151) (0.152) (0.491) (0.797) (2.971) (0.165) (1.634) (1.564) 

LHS mean 2.463 0.269 0.752 1.443 5.578 0.320 2.302 2.956 
 
Notes: This table reports the results of estimating Equation (3). The number of observations is always 540 in 
this balanced panel data. Each cell reports the coefficient of interest from a separate regression. MPPinsiders 
means all trial participants are branded firms contributed to the MPP, MPPoutsiders are trials by firms outside the 
MPP, and MPPmix denotes trials that are collaborated on by MPP insiders and outsiders. Panels A to D report 
results by trial phase; phase IV is post-market surveillance. Controls variables include FDA approval status, 
patent status, and fixed effects for compounds and years. Robust standard errors are clustered at the compound 
level. Robust p-values: *** p<0.01, ** p<0.05, * p<0.1.  
 

Firms’ responses to the MPP vary by funding source, where firms with public-sector 

funding react more strongly with follow-on clinical trials (Table B7). Most firms outside the 

MPP are academic or public institutions. The increases are particularly strong among trials that 
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are not fully funded by industry and in phase III that involve multiple compounds. In contrast, 

privately funded trials reallocated phase IV trials to pre-market development trials; this reduction 

is more than offset by increases in publicly funded phase IV trials. There are no pre-trends in the 

event studies for all cases except a pre-period shift in insider phase III trials (Figure B4).  

These results extend prior findings in the literature. First, Finkelstein (2004) finds that 

demand-oriented policies can spur technically feasible, follow-on clinical trials by 2.5-fold. My 

findings indicate that a demand-oriented public-private partnered institution can generate about 

40% of that effect (1-fold) in a broader setting with LMIC drug market. Second, the magnitude 

of my upstream estimates lies well below the 5 to 10-fold increase in MPP licensing estimated by 

Galasso and Schankerman (2021), consistent with a smaller upstream spillover effect. Finally, 

Williams (2013) and Sampat and Williams (2019) find that private gene data restriction hinders 

follow-on R&D and patents do not necessarily so. My results complement their finding that more 

openness from private IP can foster follow-on innovation for small molecule drugs in LMIC.  

 

5.2.4 Do Firms Invest More in New Compound Development?   

Because trials on new compounds did not have unified names (i.e., generic names) pre-

approval, in previous sections I focus on trials with compounds approved by 2018. Meanwhile, it 

is also important to understand the interaction of MPP compound addition and firms’ R&D 

activities in developing new compounds that can further complement existing drugs. To account 

for the fact that most of these pre-approved compounds do not have a unified name, HIV 

investigational trials are aggregated to the drug class-year level for this analysis. First, the trend 

in trials on investigational HIV drugs suggests no reduction in overall incentives in developing 

new drugs (Figure B5). Second, Table B8 confirm the hypothesis that the MPP weakly increases 

overall R&D activity in investigational drugs. In addition, phase-specific event studies (Figure 

B6) justify that MPP insiders and industry-funded trials are increasing particularly for phase III 

trials. This result indicates that MPP insiders and industry trial funders invest more in new 

compounds that can further complement existing drugs.  

 

5.3 R&D Results in New Drug Approvals 

In this market, generic firms often introduce new drug cocktails by bundling compounds 

owned by different originators and offering more versions in strength and dosage forms. The 
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same empirical strategy is applied to new outcomes (i.e., new drug product approvals). More 

follow-on drug products are approved with compounds that entered the pool earlier relative to 

those that entered the pool later or outside the pool. This increase includes generic approvals of 

new cocktails and more firms gaining generic approvals of drug products with pooled 

compounds. The MPP-induced rise in generic approvals is consistent with the regulatory 

standard that generic firms are exempted from new trials for priorly approved drugs. The 

estimates are larger when converting drugs to the compound level, when the estimates capture 

the follow-on drug product approvals involving a compound in either standalone or cocktail 

form. Alternative models are implemented, including count data models and cox proportional 

hazard models, yielding similar results. Appendix F provides more detailed results.  

 

5.4 Other Results 

In addition, Table B12 and Figure B8 report Bacon decomposition results on treatment 

heterogeneity for the innovation analyses in both clinical trials and drug approvals. Similar to 

those in the diffusion analysis, most of the estimated treatment effects (81-84%) stem from a 

comparison of treated compound-years with classic control units (“Never vs. Timing”), with 

treatment magnitudes slightly larger than the finally weighted average treatment effect estimates. 

The “within” variation from observables mitigates the treatment effects but with small weights.  

Following Roth (2022), the largest calculated potential bias is of a magnitude much 

smaller than the estimated effects in my event studies (i.e., a pre-trend of such size is likely to 

generate at least one statistically significant pre-period event study coefficient). If a linear trend 

indeed exists (although not detectable), my actual estimates are still substantially larger (4.5-8.5 

times for main innovation outcomes) than the size of the calculated largest potential biases. For 

example, I estimate an increase of 9.9 new trials and 20.8 participating firms per compound year 

after MPP, and the calculated potential biases with 50% power are 1.1 trials and 2.4 firms, 

respectively (with 80% power: 1.7 and 3.6) – i.e., much smaller than the estimates (Table B13).  

Finally, a few case studies are provided to support the R&D analysis (Appendix E). 

Results from this part suggest that firms react to the MPP with higher R&D inputs and outputs. 

While pool outsiders increase trials on drugs with pooled compounds, pool insiders invest more 

in new compound development and shift post-market trials to outsiders. The increases in R&D 

outputs are driven by approvals of generic versions of existing drugs and new formulations.  
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6. Conclusion 
I find that the MPP increases the diffusion of affordable generic versions of associated 

drugs by about seven percentage points. The results are stronger in countries where a drug has 

been patented and when drug cocktails are de-bundled to the compound level. The results are 

robust to a set of robustness and sensitivity tests. In addition, the pool also weakly increases 

R&D in follow-on clinical trials and drug product approvals. Branded firms inside the pool 

reallocate clinical trials to drugs close to the market and new compound development. Firms 

outside the pool increase trials with pooled compounds and generic firms obtain more drug 

approvals with pool-associated compounds. Overall, the MPP increases welfare by lowering the 

costs of licensing and offers new channels of marketing in underdeveloped LMIC markets.  

Although the focus is on the MPP’s initial work on HIV drug cocktails, the general focus 

on infectious diseases and pool expansion deserve future work. The inclusion of hepatitis C and 

tuberculosis in 2015, the expanded mandate to WHO’s small molecule essential drugs in 2018, 

and the partnership in the Covid-19 Technology Access Pool expose the MPP to challenges and 

opportunities. As many diseases have originated in LMIC and later become prevalent in the US, 

it is beneficial to develop global institutions for drug diffusion and innovation. Amid the current 

pandemic and rising anti-microbial resistance, institutions such as the MPP offer new options.35  

The MPP also provides insights from a mechanism design perspective. As a non-profit 

pool with for-profit patent holders, the public-private partnership makes it natural to consider 

diffusion and innovation in coordinated manners. Different from software pools, the lowest MPP 

licensing unit is at the compound level, including all relevant territory patents in the licenses, 

eliminating concerns on selection in patents. Furthermore, the MPP segments the market to 

lower licensing costs for sales in LMIC but not in high-income territories, allowing branded 

firms to maintain prior strategies in lucrative markets and to broaden licensed sales in LMIC.   

There are some limitations given the context of the MPP. The pool design is taken as 

given and cannot be extrapolated if the design changes drastically. With substantial internal 

validity of the MPP on infectious diseases in LMIC, more research is needed to evaluate pools 

with more complex products in developed countries. Furthermore, since a patent pool is designed 

to reduce multiple market frictions, it is difficult to quantify the magnitude of each mechanism. 

 
35 The new challenges also highlight value of various institutions in the supply chain, for example, pooled 
procurement institutions can supplement IP licensing for older, off-patent drugs (Wang and Zahur, 2021).  
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Finally, given the practical challenges to account for all unobservables that can affect outcomes 

and firms’ decision in pool participation, future research is needed to overcome this limitation.  

This paper has implications for policy and firm strategies. Institutional innovation can 

align public and private interests to improve welfare. Branded firms can use a patent pool to 

collaboratively expand market in LMIC and reduce costs. Such technology diffusion involves 

licensing designs that allow for broad use of patents and the preservation of licensor’s rights in 

preferred territory, which are particularly valuable for diseases with heavy global burdens.  
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Appendix A: Data Construction   
 
A.1 Drug-country-year panel of HIV drug access  

The Price and Quality Reporting Data provide information on procurement transactions made 
by Global Fund-supported programs.1 Starting from the raw data, I follow the data caveats document 
and drop clearly duplicated transaction records. At the country-level, I construct a listing file with all 
countries in the dataset and assign the appropriate International Organization for Standardization (ISO) 
three-digit alphabetical country code. This procedure guarantees that a country will be consistently 
treated regardless of the variation in spelling (e.g., “Viet Nam” vs. “Vietnam”; “DR Congo” vs. “Congo 
(Democratic Republic)”) and facilitates data merging across different datasets. I also drop the redundant 
regional-level summary data (e.g., “Western Asia” and “World”).  

At the firm level, I unify manufacturing firm names to correct inconsistency induced by different 
spellings (e.g., “Cipla” vs. “Cipla Ltd.” vs. “Cipla Inc.”). I assign a transaction-level indicator for 
generic drugs if the drug is purchased from a generic manufacturer. At the drug level, I focus on generic 
names (international names of compounds within a drug), given that branded names vary across 
countries, depending partly on trademark registration. For drugs with multiple compounds, I unify the 
order of compounds within the drug to avoid over-counting of drug varieties; corresponding adjustments 
are then applied to all variables that are order-sensitive, such as milligram (mg) strength for each 
compound within a drug. For each drug in my database, I collect standard U.S. adult daily doses from 
FDA, AIDSinfo, and WHO, and I report the information in Appendix III (the medical appendix) Table 
A2.2  

I calculate the percentage of generic transactions by dividing the number of transactions made 
with generic manufacturers for a country and a given drug in a year by the total number of transactions 
made at the same country for the same drug in the same year. I then calculate the percentage of generic 
quantity purchases following the same idea. Since different drug products may have different strengths 
(e.g., “10mg/mL”, “300 mg”), I calculate the effective strength for each smallest unit – the stock 
keeping unit (SKU). I then calculate the total strength supplied in a transaction by multiplying strength 
per SKU with the number of SKUs in a pack and the number of packs. The percentage of quantity 
ordered is calculated as the number of patient-years supplied by generic manufacturers for a drug-
country-year to the total patient-years purchases for the same drug-country-year. Finally, for product 
variety purchases, I count the number of unique drug-formulation (strength-dosage form)–manufacturer 
combinations in a country-year.  

In the compound-country-year level analysis, I aggregate compound-specific information from 
multi-compound drugs into country-year levels. For example, I calculate the numbers of generic and 
total transactions related to a given compound in a country-year. I then reshape the data to the 
compound-country-year level and divide the two to get the percentage of generic transactions for a 
compound in a country-year. The same logic follows for other procedures.  
 
A.2 Compound-year panel of HIV clinical trials  

Clinical trials data are available from clinicaltrials.gov, the largest peer-reviewed clinical trials 
registry in the world and the most widely used by scientists. This U.S.-based trial registry accepts trial 
registration globally, particularly as multi-national companies typically conduct trials in multi-country 

 
1 Available at https://www.theglobalfund.org/en/sourcing-management/price-quality-reporting//. Data last 
accessed in 8/2018, when I request all available yearly data by 2017 from the online system. The data request 
system has been updated in 2019 and requires additional conversion from Tableau files.  
2 I focus on U.S. standard adult daily doses for two practical reasons. First, although it is ideal to collect country-
specific dosing standards, it is practically impossible to collect this data across over 100 countries. Second, adult 
doses are more standard and comparable compared to pediatric doses that depend on age and weight. Realizing the 
caveats, I also use a quantity-free percentage of transaction measure.  

https://www.theglobalfund.org/en/sourcing-management/price-quality-reporting/
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clinical sites.3 Each clinical trial has a unique identifier (i.e., an NCT number) and a set of data recorded 
and updated periodically.4 Researchers can typically use Medical Subject Headings (MeSH) terms in the 
programming processes to pinpoint trials for specific disease conditions, but such processes are not 
always accurate to locate specific drugs. Therefore, I obtain compound-specific NCT numbers from 
AIDSinfo to identify HIV-related trials. I collect NCT numbers for all FDA-approved HIV drugs and 
investigational HIV drugs.  

To keep a comprehensive record, I create a variable to store values for each trial based on the 
compound references in AIDSinfo. For trials referenced in AIDSinfo by brand names, I assign the 
associated generic name to unify the record. The number of new trials initiated for a compound-year is 
calculated based on the trial starting date reported and verified in the database. For each trial, I calculate 
the number of distinct firms collaborating in the trial. I then calculate the number of firms participating 
in a compound-year by computing the total number of firms collaborating in trials on a given compound 
in a year. This value captures the intensive margin of firms’ trial participation on the compound-year 
level, including a firm’s multiple participations across trials. For investigational trials, there are no 
generic names to facilitate unification, so I further collect the associated drug classes (mechanisms of 
action) for related aggregation.  
 
A.3 Drug-year and compound-year panel of HIV drug product approvals  
 From the Drugs@FDA online database, I request “All Approvals by Month” (approvals, 
tentative approvals, and supplements) and append the data.5 To pinpoint all approvals for HIV drugs, I 
convert the “active ingredients” variable all to lower-case and perform a text match, keeping the records 
if the active ingredients of a drug include any compounds used in HIV treatment. Next, I subset the most 
relevant approvals—original approval of a drug product produced by a firm (submission code “ORIG-
1”) instead of supplements to approved applications (submission code including “SUPPL”). As a final 
check to avoid over-inclusion, I drop a few records of drugs approved for hepatitis C treatment with 
antiretroviral compounds. Following the same logic, I then clean the WHO pre-qualification program—
the other largest drug approval and qualification agency.6 The list is comprehensive and relatively clean. 
The other steps follow the same logic and process as described above.  
 One must be cautions in calculating the period between the first-ever approval of a drug and its 
follow-on approvals, either cumulative innovation or straightforward imitation. For standalone drugs 
with a single compound, each compound has a unique date for its first-ever approval. For drug cocktails, 
I calculated a first-ever technically feasible date as the date all the underlying compounds are approved 
in any format. I also record the first actual approval dates for cocktails with existing compounds. These 
approval dates can help us understand follow-on innovation in multiple respects: approvals of new 
cocktails and formulations versus imitations.  
  

 
3 Researchers can retrieve a zipped file with all trials included in XML format or request certain trials with 
advanced search options. The site has been updated over time and users are recommended to check the latest 
XML schema and/or data request options (data last accessed: 11/2018).  
4 A descriptive webpage with data element definitions and mandatory information disclosure requirement in trials 
is available at: https://prsinfo.clinicaltrials.gov/definitions.html.  
5 Available at: https://www.accessdata.fda.gov/scripts/cder/daf/. Note there are other ways to obtain the 
underlying data that involve merging across segmented files. I use this conservative data request method due to 
the lack of detailed instruction concerning alternatives. Last accessed: 1/20/2019.  
6 Available at https://extranet.who.int/prequal/content/prequalified-lists/medicines.  

https://prsinfo.clinicaltrials.gov/definitions.html
https://www.accessdata.fda.gov/scripts/cder/daf/
https://extranet.who.int/prequal/content/prequalified-lists/medicines
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Table A1: Approved Active Pharmaceutical Ingredients (Compounds) Treating HIV 
(generic names marked with * are compounds no longer recommended in the US) 

 
Drug 
class Generic name Abbr. Brand drug holder date: FDA 

approval date: add to MPP 

NRTIs 

abacavir  ABC ViiV Healthcare 1998.12.17 2013.02.13ped 
didanosine * ddI Bristol-Myers Squibb 1991.10.09  
emtricitabine  FTC Gilead Sciences, Inc. 2003.07.02 2011.07.11 
lamivudine 3TC ViiV Healthcare 1995.11.17  
stavudine * d4T Bristol-Myers Squibb 1994.06.24  
tenofovir 
alafenamide TAF Gilead Sciences, Inc. 2015.11.05 2014.07.22 
tenofovir 
disoproxil 
fumarate  

TDF Gilead Sciences, Inc. 2001.10.26 2011.07.11 

zidovudine  ZDV ViiV Healthcare 1987.03.19  

NNRTIs 

doravirine DOR Merck & Co., Inc. 2018.08.30  
efavirenz  EFV Bristol-Myers Squibb 1998.09.17  
etravirine ETR Janssen 2008.01.18  
nevirapine NVP Boehringer Ingelheim 1996.06.21  
rilpivirine RPV Janssen 2011.05.20  

PIs 

atazanavir ATV Bristol-Myers Squibb 2003.06.20 2013.12.11 
darunavir DRV Janssen 2006.06.23  
fosamprenavir FPV ViiV Healthcare 2003.10.20  
indinavir * IDV Merck & Co., Inc. 1996.03.13  
nelfinavir * NFV Agouron (ViiV) 1997.03.14  
lopinavir LPV AbbVie Inc. 2000.09.15 2014.11.24ped; 2015.12.17adult 
ritonavir  r AbbVie Inc. 1996.03.01 2014.11.24ped; 2015.12.17adult  
saquinavir SQV Hoffman-La Roche 1995.12.06  
tipranavir TPV Boehringer Ingelheim 2005.06.22  

FIs enfuvirtide ENF Hoffman-La Roche 2003.03.13  

EIs Ibalizumab IBA TaiMed Biologics 2018.03.06  
maraviroc MVC ViiV Healthcare 2007.08.06  

IIs 

bictegravir BIC Gilead Sciences, Inc. 2018.02.07 2017.09.26 
dolutegravir DTG ViiV Healthcare 2013.08.12 2014.03.31ped. & adult 
elvitegravir EVG Gilead Sciences, Inc. 2012.08.27  2011.07.11 
raltegravir RAL Merck & Co., Inc. 2007.10.12 2015.02.20ped 

Enhancers cobicistat COBI Gilead Sciences, Inc. 2012.08.27 2011.07.11 
 
Notes: (1) The table shows all drugs approved but not all in the diffusion sample (Table D2). E.g., IBA, the only 
monoclonal antibody, does not show up in any sales data. (2) I excluded 3 compounds withdrawn from the market 
pre-2000 (i.e., APV, ddC, DLV). EVG and COBI were first approved as part of a cocktail; standalone compounds 
were approved on 9/24/2014. Standalone TAF was approved on 2016.11.10 after cocktail approval on 2015.11.05. 
(3) MPP licenses for ABC and RAL restrict to pediatric formulation. I treat DRV as not in the pool, although NIH 
put its part of related patents but not those owned by Janssen, resulting in no technology transfer nor sub-licensing 
so far. (4) drug classes are groups by mechanisms of action (details in Table D1). (5) DTG was marked as 
8/12/2013 in FDA raw data but as 8/13/2018 on FDA websites. DTG enters the MPP on 3/31/2014 with different 
territories for adult and pediatric products. (6) Agouron is a Pfizer subsidy since 1999 and Pfizer is part of ViiV 
Healthcare (joint venture with GlaxoSmithKline and Shionogi). 
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Appendix B: Figures and Tables  

 

 
Figure B1: HIV death rate and prevalence, across MPP common territories 

 

Notes: This figure visualizes age-adjusted HIV death rates (per 100k population) and HIV prevalence in MPP 
common sales territory. In particular, there are no disease-related events generating exogenous shocks to 
HIV/AIDS mortality during my sample period.   
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Figure B2: Event Studies for Innovation Analysis: Clinical Trials, by Firm and Phase 

 
Notes: The figures report event-study coefficient estimates using Equation (4). The dots are point estimates 
of differences in outcomes between treated and control groups 6 years before and 4 years after MPP 
inclusion. The whiskers correspond to 95% confidence intervals.  
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Figure B3: Event Studies for Innovation Analysis: Clinical Trials by Funding Type 

 
Notes: These figures report event-study coefficient estimates using Equation (4). The dots are point estimates 
of differences in outcomes between treated and control groups 6 years before and 4 years after MPP 
inclusion. The whiskers correspond to 95% confidence intervals.  
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Figure B4: Event Studies for Innovation Analysis: Clinical Trials, by Funder and Phase 

 
Notes: These figures report event-study coefficient estimates using Equation (4). The dots are point estimates 
of differences in outcomes between treated and control groups 6 years before and 4 years after MPP 
inclusion. The whiskers correspond to 95% confidence intervals.  
  



 
 
 

8 

 
(a) Total Trials on HIV Investigational Drugs, and across MPP-affiliation 

 

 
(b) Investigational Trials by Phases (I-III) 

 

Figure B5: Descriptive Trends: # New Trials on HIV Investigational Drugs (pipeline) 
 
Notes: This graph depicts the trends of the number of new clinical trials initiated per year on HIV 
investigational drugs, i.e., new compounds that have not been approved (majority, 90%, as in phases I-III) or 
investigational use of existing drugs (beyond approved antiretrovirals) for new HIV treatment purposes. The 
vertical dashed line indicates the time when the MPP was established.  
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Figure B6: Event Studies: Clinical Trials for HIV Investigational Drugs, by Phase 

 
Notes: The figures report event-study coefficient estimates at drug class-year level. The dots are point 
estimates of differences in outcomes between treatment and control groups 6 years before and 4 years after 
MPP inclusion. The whiskers correspond to 95% confidence intervals.   
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Figure B7: Histograms of Time-to-Generic by MPP Status 

 
Notes: The figures show the association between time-to-generic and MPP status. Time-to-generic is measured as the 
years (continuous variable) between when all original compounds were approved and when the first generic 
(combination) of existing compounds is approved in a given strength-dosage form. The upper panel uses the full sample 
(2005-2018) and the bottom panel displays the sample where MPP has been established (2010-2018).  
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(a) Diffusion sample (upper: drug-country-year-level; lower: compound-country-year-level) 

 
(b) Innovation sample: clinical trials & drug approvals 

Figure B8: Bacon Decomposition for diffusion and innovation samples  
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Table B1: Regressing MPP Indicator on Observables 
  

(1) FE only (2) (3) 
R2 (two-way s.e.) 0.820 0.821 0.821 
R2 (one-way s.e.) 0.827 0.828 0.828 
HIV death rate 

 
-0.000137 -0.000139 

(age-adjusted, 
 

(0.000228) (0.000229) 
per 100k pop.)  [7.49e-05] [7.56e-05] 
HIV prevalence 

 
4.10e-08 4.12e-08   

(1.20e-07) (1.20e-07) 
  [3.61e-08] [3.63e-08] 
log(population) 

 
0.193 0.196   

(0.420) (0.425) 
  [0.153] [0.153] 
GDP per capita 

 
7.16e-06 7.09e-06   

(6.02e-06) (6.32e-06) 
  [5.82e-06] [5.86e-06] 
voice and 

 
0.000692 0.000715 

accountability 
 

(0.00116) (0.00126) 
  [0.00106] [0.00106] 
political stability 

 
0.000450 0.000438 

and lack of 
 

(0.000610) (0.000636) 
violence  [0.000504] [0.000503] 
government 

 
-0.000310 -0.000305 

effectiveness 
 

(0.000790) (0.000876) 
  [0.000721] [0.000722] 
regulatory 

 
0.00126* 0.00125 

quality 
 

(0.000740) (0.000763) 
  [0.00102] [0.00102] 
rule of law 

 
-0.00105 -0.00106   

(0.000632) (0.000624) 
  [0.000965] [0.000964] 
control of 

 
0.000653 0.000665 

corruption 
 

(0.000677) (0.000713) 
  [0.000839] [0.000835] 
patentdct 

  
0.0139    

(0.0791) 
   [0.0360] 
country-drug & year FEs Y Y Y 
Xct controls  Y Y 
Xdct controls   Y 
Observations 7,084 7,084 7,084 

 

Notes: This table reports a diagnostic regression on whether the MPP inclusion decision can be predicted by 
changes in observed characteristics during the sample period. As shown above, none of the observables are 
significant predictors of when a drug-country pair is added to the MPP and is available for bundled licensing. In 
addition, disease rate and prevalence, population, income, and institution-related factors do not effectively 
increase predictive power of the MPP inclusion indicator, net of fixed effects. Robust standard errors are two-way 
clustered at the drug and country levels and are reported in parenthesis (). Robust standard errors clustered at the 
country level are reported in []. Two-way robust p-values: * p<0.1.   
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Table B2: Diffusion Analysis in Alternative Specification 
 

  (1) (2) (3) (4) (5) (6) 
Dept. Vars. % generic orders % generic quantities # products 

𝑀𝑃𝑃𝑑𝑐𝑡 7.526** 7.535** 7.250** 7.254** 0.0623 0.0629 
 (3.355) (3.347) (3.123) (3.122) (0.113) (0.113) 
 [2.700] [2.700] [2.734] [2.736] [0.0747] [0.0746] 
       

country-drug FE Y Y Y Y Y Y 
country-year FE Y Y Y Y Y Y 
Xdct control Y  Y  Y 
LHS mean 84.3 84.3 85.6 85.6 1.7 1.7 
Observations 7,084 7,084 7,084 7,084 7,084 7,084 

 
Notes: This table reports the results of estimating the MPP’s causal impact on drug-country-year level generic 
drug diffusion with an alternative specification. All the country-year level observables are replaced with a full set 
of country-year level fixed effects. Fixed effects for drug-country pairs are always included. Drug-country-year 
level effective patent status is included in the last set of columns to demonstrate coefficient stability. Each cell 
reports the coefficient-of-interest from a separate regression. Robust standard errors reported in () are two-way 
clustered at the drug and country levels. Robust standard errors reported in [] are clustered at the country level. 
Two-way robust p-values: *** p<0.01, ** p<0.05, * p<0.1.  
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Table B3: Diffusion Analysis in Sample Territories 
 

  (1) (2) (3) (4) (5) (6) 
Samples MPP common territories MPP ever-covered territories 
 Dept. Vars.  % generic  %Q generic  # products  % generic  %Q generic  # products 
Panel A: drug-country-year level analysis 
𝑀𝑃𝑃𝑑𝑐𝑡 5.011* 5.312** 0.115 7.528** 7.280** 0.0730  

(2.851) (2.553) (0.148) (2.913) (2.761) (0.104) 
 [3.318] [3.423] [0.121] [2.690] [2.699] [0.0802] 
       

LHS mean 88.65 89.74 1.77 85.68 87.00 1.73 
# obs.  3,547 3,547 3,547 6,829 6,829 6,829 
       

Panel B: compound-country-year level analysis 
𝑀𝑃𝑃𝑎𝑐𝑡 8.378** 10.06** 0.228 10.54*** 10.89*** 0.129 

 (3.922) (3.546) (0.266) (3.593) (3.334) (0.190) 
 [3.867] [4.084] [0.143] [3.064] [3.213] [0.111] 
       

LHS mean 84.34 86.33 2.77 81.29 83.53 2.57 
# obs. 3,221 3,221 3,221 6,202 6,202 6,202 
       

FEs Y Y Y Y Y Y 
Xct control Y Y Y Y Y Y 
Xdct control Y Y Y Y Y Y 

 
Notes: This table reports the results of estimating equation (1) in subsamples of MPP common territories 
(countries in every drug’s territory) and the MPP ever-covered territories (eligible for at least one drug). Each cell 
reports the coefficient-of-interest from a separate regression. Fixed effects for drug-country pairs (Panel A), 
compound-country pairs (Panel B), and years are always included. The specification also controls drug-country-
year level effective patent status and country-year level observables. Robust standard errors reported in () are 
clustered using two-way clustering at the drug and country levels. Robust standard errors reported in [] are 
clustered at the country level. Two-way robust p-values: *** p<0.01, ** p<0.05, * p<0.1.  
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Table B4: Diffusion Analysis in Sample Drugs 
 

  (1) (2) (3) (4) (5) (6) 
Samples drug class 

in 1st pool 
addition 

drop one 
drug 
class 

drop drug no 
longer U.S. 

recommended 

drugs 
approved 

1996+ 

drugs by 
MPP insider 

firms 

by firms “all 
in” or “all 
out” MPP 

Panel A: % generic orders as dependent variable  
𝑀𝑃𝑃𝑑𝑐𝑡 11.13*** 7.030** 7.415** 6.848** 7.304** 8.087*  

(3.586) (2.951) (2.967) (2.938) (2.842) (3.787) 
 [3.471] [2.773] [2.687] [2.705] [2.706] [3.633] 
       

LHS mean 94.80 82.77 83.92 83.41 86.64 65.97 
# Obs. 4,463 5,828 6,316 5,786 6,127 3,196 

Panel B: % generic quantity ordered (patient year) as dependent variable  
𝑀𝑃𝑃𝑑𝑐𝑡 10.32*** 6.520** 7.234** 6.620** 7.145** 7.258* 

 (3.366) (2.874) (2.838) (2.823) (2.727) (3.648) 
 [3.335] [2.781] [2.693] [2.702] [2.709] [3.973] 
       

LHS mean 95.44 84.11 85.25 84.64 88.13 69.22 
# Obs. 4,463 5,828 6,316 5,786 6,127 3,196 

 
Notes: This table reports the results of estimating equation (1) in subsamples with different drugs in the control 
groups. Each cell reports the coefficient-of-interest from a separate regression. Fixed effects for drug-country pairs 
and years are always included. The specification also controls drug-country-year level effective patent status and 
country-year level observables. Robust standard errors reported in () are two-way clustered at the drug and 
country levels. Robust standard errors reported in [] are clustered at the country level. Two-way robust p-values: 
*** p<0.01, ** p<0.05, * p<0.1.  
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Table B5: Subsample Diffusion Analysis: Ever vs Never Patented 
  

(1) (2) (3) (4) (5) (6) 
Dept. Vars. % generic orders (#) % generic ordered (p.p.y) # product-manufacturers 
Subsample 𝑃𝑎𝑡.=1 𝑃𝑎𝑡.=0 𝑃𝑎𝑡.=1 𝑃𝑎𝑡.=0 𝑃𝑎𝑡.=1 𝑃𝑎𝑡.=0 

Panel A: drug-country-year subsamples 
𝑀𝑃𝑃𝑑𝑐𝑡 20.65** 4.360 18.03* 4.675* -0.0122 0.0887 

(9.771) (2.696) (9.321) (2.709) (0.0886) (0.126) 
[7.667] [2.678] [7.079] [2.770] [0.118] [0.0924] 

LHS mean 83.73 84.54 84.42 86.12 1.75 1.70 
Observations 2,029 5,055 2,029 5,055 2,029 5,055 

       

Panel B: compound-country-year subsamples  
𝑀𝑃𝑃𝑎𝑐𝑡 19.85*** 4.601 17.29*** 6.699 -0.193 0.372* 

 (3.665) (3.735) (3.600) (3.962) (0.176) (0.198) 
 [4.321] [3.537] [4.351] [3.941] [0.152] [0.176] 

LHS mean 84.19 85.54 84.99 87.33 1.75 1.72 
Observations 3,328 3,157 3,328 3,157 3,328 3,157 

       

two sets of FEs Y Y Y Y Y Y 
Xct control Y Y Y Y Y Y 
Xd(a)ct control Y 

 
Y 

 
Y 

 

 
Notes: This table reports the results of subsample diffusion analyses in countries where a drug (Panel A) or 
compound (Panel B) is ever or never patented during the sample period. Each cell reports the coefficient-of-
interest from a separate regression. The specification controls effective patent status and country-year level 
observables. Fixed effects for drug(compound)-country pairs and years are always included. Robust standard 
errors reported in () are two-way clustered at the drug/compound and country levels. Robust standard errors 
reported in [] are clustered at the country level. Two-way robust p-values: *** p<0.01, ** p<0.05, * p<0.1.  
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Table B6: Diffusion Analysis: Reduced-form Price and Quantity Regressions 
 

  (1) (2) (3) (4) (5) (6)  
log(Prices (Per Patient Year)) log(Quantity (Patient-Year Served)) 

Dept. Vars. Overall Generic Branded Overall Generic Branded 
𝑀𝑃𝑃𝑑𝑐𝑡 -0.355*** -0.350*** -0.0344 0.523*** 0.707*** 0.0797  

(0.103) (0.0798) (0.0653) (0.171) (0.152) (0.323) 
 [0.0489] [0.0335] [0.0887] [0.126] [0.149] [0.352] 
       

FEs Y Y Y Y Y Y 
Xct control Y Y Y Y Y Y 
Xdct control Y Y Y Y Y Y 

       

LHS mean 4.95 4.68 6.61 5.44 5.67 3.42 
# Obs. 7,084 6,167 1,351 7,084 6,167 1,351 

 
Notes: This table reports the results of estimating equation (1) using prices and quantities as outcomes. The 
problems and measurement issues with direct price and quantity regressions are discussed in section 3.2 and 
footnotes 18-19. Each cell reports the coefficient-of-interest from a separate regression. Fixed effects for drug-
country pairs and years are always included. The specification also controls drug-country-year level effective 
patent status and country-year level observables. Robust standard errors reported in () are two-way clustered at the 
drug and country levels. Robust standard errors reported in [] are clustered at the country level. Two-way robust p-
values: *** p<0.01, ** p<0.05, * p<0.1.  
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Table B7: Innovation Analysis - Clinical Trials: by Funding Types 
 

  (1) (2) (3) (4) (5) (6)  
# new HIV trials funded by # firms in new HIV trials funded by 

Dept. Vars. industry ind.&pub. public industry ind.&pub. public 
Total 

𝑀𝑃𝑃𝑎𝑡 2.296* 0.898 4.899* 2.750* 3.231 11.77* 
(1.227) (1.026) (2.759) (1.572) (3.082) (6.144) 

LHS mean 3.417 1.996 4.663 4.494 5.880 10.36 
Panel A. Phase I 

𝑀𝑃𝑃𝑎𝑡 0.197 0.313 0.604 0.251 0.930 1.133 
(0.199) (0.201) (0.532) (0.292) (0.608) (0.924) 

LHS mean 0.546 0.209 0.596 0.774 0.546 0.985 
Panel B. Phase II 

𝑀𝑃𝑃𝑎𝑡 0.504 -0.244** 0.665** 0.556 -0.852** 1.416* 
(0.397) (0.113) (0.275) (0.473) (0.328) (0.694) 

LHS mean 0.806 0.291 0.813 1.007 0.941 1.756 
Panel C. Phase III 

𝑀𝑃𝑃𝑎𝑡 2.275*** -0.129 1.228*** 2.743*** -0.664* 2.506* 
(0.721) (0.0981) (0.434) (0.900) (0.358) (1.288) 

LHS mean 1.524 0.393 0.969 1.943 1.256 2.772 
Panel D. Phase IV 

𝑀𝑃𝑃𝑎𝑡 -0.424** 0.574 1.174 -0.547*** 2.352 2.735* 
(0.164) (0.481) (0.805) (0.185) (1.584) (1.601) 

LHS mean 0.354 0.796 1.313 0.444 2.402 2.731 
 
Notes: This table reports the results of estimating equation (3). The number of observations is always 540 with the 
balanced panel structure. Each cell reports the coefficient-of-interest from a separate regression. Industry-funded means 
the trial is 100% industry funded, while "ind.&pub.” means the trial is private-public jointly funded. Control variables 
include FDA approval status, patent status, and fixed effects for compounds and years. Robust standard errors are 
clustered at the compound level (in parentheses). Robust p-values: *** p<0.01, ** p<0.05, * p<0.1.  
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Table B8: Innovation Analysis - Clinical Trials on HIV Investigational Drugs 
 

 (1) (2) (3) (4) (5) 

Dept. Vars. # new 
trials 

# trials, MPP 
insiders 

# trials, MPP 
outsider 

# industry-
funded trials 

# public-
funded trials 

Total 
𝑀𝑃𝑃𝑎𝑡 4.230 2.959 1.271 2.871* 1.360 

 (2.254) (1.529) (1.071) (1.229) (1.072) 
LHS mean 8.58 3.30 5.29 5.67 2.91 
Panel A. Phase I 
𝑀𝑃𝑃𝑎𝑡 -0.582 -0.440 -0.142 -0.823 0.241 

 (1.305) (0.855) (0.762) (0.918) (0.605) 
LHS mean 3.45 0.81 2.64 1.95 1.51 
Panel B. Phase II 
𝑀𝑃𝑃𝑎𝑡 0.553 0.888 -0.335 0.280 0.273 

 (0.474) (0.629) (0.444) (0.267) (0.227) 
LHS mean 3.23 1.18 2.06 2.34 0.89 
Panel C. Phase III 
𝑀𝑃𝑃𝑎𝑡 2.770* 2.504* 0.266 2.599** 0.170 

 (1.230) (1.097) (0.284) (1.051) (0.195) 
LHS mean 1.98 1.37 0.60 1.81 0.17 

 
Notes: This table reports the results at drug class-year level. The number of observations is always 91 with the balanced 
panel structure. There are seven drug classes in the analysis, of which six are drug classes with existing compounds 
approved and the further one captures the set of new drug classes without existing products for HIV treatment, such as 
gene therapy, biological antibody, etc. Each cell reports the coefficient-of-interest from a separate regression. Industry-
funded means a trial is at least partly funded by industry. Control variables include FDA approval status, patent status, 
and fixed effects for compounds and years. Robust standard errors are clustered at the drug class level (in parentheses). 
Robust p-values: *** p<0.01, ** p<0.05, * p<0.1.  
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Table B9: 1st Time New HIV Drug Approvals with Existing Compounds 
 

drug firm ymd branded compound owners # type 
Panel A: 1st Time New Drug Approvals by Branded Firms 
3tc+zdv ViiV 1997.09.26 ViiV+ViiV 1 cocktail 
abc+3tc+zdv ViiV 2000.11.14 ViiV+ViiV+ViiV 1 cocktail 
abc+3tc ViiV 2004.08.02 ViiV+ViiV 1 cocktail 
ftc+tdf Gilead 2004.08.02 Gilead+Gilead 1 cocktail 
efv+ftc+tdf Gilead 2006.07.12 BMS+Gilead+Gilead 2 cocktail 
ftc+rpv+tdf Gilead 2011.08.10 Gilead+Janssen+Gilead 2 cocktail 
abc+dtg+3tc ViiV 2014.08.22 ViiV+ViiV+ViiV 1 cocktail 
cobi Gilead 2014.09.24 Gilead 1 standalone 
evg Gilead 2014.09.24 Gilead 1 standalone 
atv+cobi BMS 2015.01.29 BMS+Gilead 2 cocktail 
cobi+drv Janssen 2015.01.29 Gilead+Janssen 2 cocktail 
3tc+ral Merck 2015.02.06 ViiV+Merck 2 cocktail 
ftc+rpv+taf Gilead 2016.03.01 Gilead+Janssen+Gilead 2 cocktail 
ftc+taf Gilead 2016.04.04 Gilead+Gilead 1 cocktail 
taf Gilead 2016.11.10 Gilead 1 standalone 
dtg+rpv ViiV 2017.11.21 ViiV+Janssen 2 cocktail 
cobi+drv+ftc+taf Janssen 2018.07.17 Gilead+Janssen+Gilead+Gilead 2 cocktail 
Panel B: 1st Time New Drug Approvals by Generics 
3tc+nvp+zdv Pharmacare 2005.01.24 ViiV+BI+ViiV 2 cocktail 
3tc+zdv+efv Aurobindo 2006.03.06 ViiV+ViiV+BMS 2 cocktail 
3tc+d4t+nvp Cipla 2006.11.17 ViiV+BMS+BI 3 cocktail 
3tc+d4t Cipla 2007.01.19 ViiV+BMS 2 cocktail 
d4t+3tc+efv Strides 2007.06.01 BMS+ViiV+BMS 2 cocktail 
3tc+tdf Hetero 2009.11.05 ViiV+Gilead 2 cocktail 
efv+3tc+tdf Mylan 2010.10.25 BMS+ViiV+Gilead 3 cocktail 
3tc+tdf+nvp Matrix Labs 2011.09.08 ViiV+Gilead+BI 3 cocktail 
atv+r Matrix Labs 2011.11.18 BMS+AbbVie 2 cocktail 
atv+r+3tc+zdv Mylan 2014.09.04 BMS+AbbVie+ViiV+ViiV 3 cocktail 
ftc+tdf+nvp Mylan 2014.09.12 Gilead+Gilead+BI 2 cocktail 
dtg+3tc+tdf Mylan 2017.08.02 ViiV+ViiV+Gilead 2 cocktail 
dtg+ftc+taf Mylan 2018.02.09 ViiV+Gilead+Gilead 2 cocktail 

 
Notes: This table summarizes the first approvals of HIV drugs based on existing compounds, reported for originators 
and generics in different panels and chronologically ordered within each panel. These first-time follow-on new 
approvals are typically for drug cocktails, except in three cases where the originators first created new compounds 
approved as part of a cocktail before the new standalone compound is approved. BI stands for Boehringer Ingelheim. 
The column “#” counts distinct brand owners of each underlying drug. Note that first-time new generic cocktails are not 
reported before 2005 because of a combination of international patent enforcement in India since then and new FDA 
approval initiatives. This table, together with Table 1, complete the list of first-approval information for all HIV drugs 
by the end of 2018.  
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Table B10: Survival and Regression Analyses on Time-to-Generic 
 

  (1) (2) (3) (4) 
Panel A: Cox Proportional Hazard Model  
MPP 0.532** 0.647** 1.019** 0.371  

(0.222) (0.257) (0.397) (0.472)      

Panel B: Regression Analysis  
MPP -3.204*** -3.727*** -1.827 -0.157 
 (1.117) (1.317) (1.102) (1.738) 
     

sample 2005-2018 2010-2018 2005-2018 2010-2018 
year FE   Y Y 
drug class FE   Y Y      

LHS mean 12.57 13.62 12.57 13.62 
Observations 108 75 108 75 

 
Notes: This table reports results of analyzing the association between time-to-generic and MPP status. Time-to-generic 
is measured as the years (continuous variable) between when all original compounds were approved and when the first 
generic (combination) of existing compounds is approved in a given strength-dosage form. The main variable of interest 
is an indicator variable of whether a first approved generic product has any MPP compound. Robust p-values: *** 
p<0.01, ** p<0.05, * p<0.1.  
 
 

Table B11: Count Model Results for Innovation Analysis – Drug Approvals 
  

(1) (2) (3)  
# approvals # appr.generic # appr.branded 

Panel A: drug-year new approvals 
𝑀𝑃𝑃𝑑𝑡 1.014*** 1.212*** 0.772  

(0.262) (0.287) (0.786) 
LHS mean 0.70 13.22 1.95 
Observations 798 518 518 
Panel B: compound-year new approvals 

𝑀𝑃𝑃𝑎𝑡 1.067*** 1.115*** 0.969** 
 (0.227) (0.259) (0.477) 
LHS mean 2.28 39.95 4.29 
Observations 378 266 336 
    

FEs Y Y Y 
controls Y Y Y 

 
Note: This table reports innovation results in drug approvals using conditional negative binomial regressions. Fixed 
effects are at drug and year levels for Panel A and at compound and year levels for Panel B. I run this exercise to test 
whether drug approval results in Table 6 (using linear models) are robust to using count data models. The number of 
observations dropped in columns (2) – (3) to adjust for different drug approved by generics and branded—
drugs/compounds that always have zero approvals by the corresponding firm type create no variation, and are dropped 
to account for different focuses in actual investment areas.   
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Table B12: Treatment Heterogeneity: Bacon Decomposition Results 
 

values/outcomes coeff. weight coeff. weight coeff. weight 
Panel A: diffusion sample 
(drug-country-year) % generic orders % quantity-adj. generic # prod. (within drug-country-year) 
Timing Groups 11.91 0.048 12.18 0.048 0.0001 0.048 
Always vs timing 5.60 0.047 5.35 0.047 -0.04 0.047 
Never vs Timing 6.79 0.901 6.66 0.901 0.09 0.901 
Always vs never 50.92 0.001 38.31 0.001 -2.91 0.001 
Within 76.23 0.003 82.28 0.003 0.10 0.003 
(comp.-country-year) % generic orders % quantity-adj. generic # prod. (within comp.-country-year) 
Timing Groups 11.30 0.088 12.67 0.088 0.10 0.088 
Always vs timing 5.73 0.019 7.51 0.019 0.11 0.019 
Never vs Timing 8.89 0.878 9.60 0.878 0.16 0.878 
Always vs never 4.09 0.006 1.74 0.006 -0.17 0.006 
Within 25.99 0.009 18.50 0.009 -1.92 0.009 
Panel B: innovation sample (compound-year level) 
 # of new clinical trials # firms in clinical trials # drug product approvals 
Timing Groups 6.96 0.13 11.05 0.13 1.06 0.13 
Never vs Timing 10.08 0.84 21.56 0.84 2.78 0.81 
Within -44.06 0.03 -61.29 0.03 3.77 0.06 
 # approvals, generic # approvals, branded  
Timing Groups 0.80 0.13 0.26 0.13   
Never vs Timing 2.44 0.81 0.34 0.81   
Within 6.74 0.06 -2.97 0.06   

 
Notes: The table reports Bacon decomposition (2021) results for main outcomes in the diffusion and innovation 
samples. The results are directly comparable to the benchmark results in Table 3 for diffusion and Tables 4 & 6 for 
innovation, and estimated using the same main specifications used in corresponding analyses. Figure B8 reports the 
corresponding visualization of Bacon decomposition results.  
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Table B13: Potential Bias under 50% and 80% Power, à la Roth (2022) 
 

Diffusion Drug-country-year level Compound-country-year level 
Sample % generic 

orders 
% generic 
quantity 

# products % generic 
orders 

% generic 
quantity 

# products 

β 7.226** 7.010** 0.0717 10.12*** 10.55*** 0.132 
𝛾̃0.5 9.896 10.663 0.082 4.756 5.423 0.110 
𝛾̃0.8 14.251 15.321 0.126 6.917 7.885 0.171 
γ0.5 3.034 3.243 0.067 1.816 1.962 0.065 
γ0.8 4.623 4.940 0.102 2.822 3.039 0.101 

       

Innovation Clinical trials results Drug product approvals 
Sample # new trials # firms in trials # trials III # approvals # generics # branded 

β 8.093 17.75* 3.374*** 2.607** 2.478** 0.129 
γ0.5 1.161 2.448 0.397 0.393 0.325 0.128 
γ0.8 1.730 3.660 0.580 0.579 0.481 0.191 

 
Notes: This table shows estimates of largest potential biases from under-powered pre-trends using Roth (2022). 
Biases are calculated under linear violations of parallel trends with slopes γ0.5 and γ0.8, against which conventional 
pre-tests have 50% or 80% power, respectively. For the diffusion sample: 𝛾̃0.5 and 𝛾̃0.8 report the largest sizes of 
slope from potential biases, when robust standard errors are two-way clustered at the drug (compound) and 
country levels. γ0.5 and γ0.8 as the largest potential biases where standard errors are clustered at the country-drug 
level (align with two-way fixed effect indices). For the innovation sample, robust standard errors are clustered at 
the compound levels. Robust p-values: *** p<0.01, ** p<0.05, * p<0.1.  
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Table B14: Estimation and Sensitivity Analyses on Diffusion Analyses with Linear Pre-trends 
 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) 
 % generic orders (#) % generic quantities (patient-year) # products (strength-dose-firm) 

Panel A: drug-country-year panel, specification 1: linear pre-trend and treatment effects 
MPPdct 9.367 9.367** 9.367*** 11.01 11.01*** 11.01*** -0.00987 -0.00987 -0.00987 

 (10.89) (3.714) (3.540) (11.75) (4.126) (3.903) (0.0985) (0.0880) (0.0895) 
pre-trend -1.011 -1.011 -1.011 -1.888 -1.888 -1.888 0.0385 0.0385 0.0385 

 (5.646) (1.815) (1.982) (5.912) (1.958) (2.098) (0.0542) (0.0405) (0.0379) 
specification 2: linear pre-trend and post period event study (in each period) 
MPP(t=0) 3.752 3.752* 3.752 3.423 3.423 3.423 -0.0311 -0.0311 -0.0311 

 (5.143) (2.258) (2.422) (4.454) (2.479) (2.641) (0.0710) (0.0634) (0.0599) 
MPP(t=1) 7.771 7.771*** 7.771*** 8.797 8.797*** 8.797*** 0.0186 0.0186 0.0186 

 (9.226) (2.418) (2.249) (9.522) (2.549) (2.356) (0.0738) (0.0714) (0.0556) 
MPP(t=2) 7.278 7.278*** 7.278*** 8.221 8.221*** 8.221*** 0.0475 0.0475 0.0475 

 (7.119) (2.040) (2.103) (7.367) (2.187) (2.128) (0.123) (0.0786) (0.0734) 
MPP(t=3) 4.752 4.752** 4.752* 5.275 5.275** 5.275** 0.0357 0.0357 0.0357 

 (6.899) (2.183) (2.446) (6.531) (2.276) (2.403) (0.178) (0.0840) (0.0805) 
MPP(t=4) 3.937 3.937* 3.937* 4.791 4.791** 4.791** 0.143 0.143* 0.143* 

 (5.776) (2.033) (2.022) (5.693) (2.100) (2.039) (0.150) (0.0767) (0.0788) 
pre-trend 0.725 0.725 0.725 0.271 0.271 0.271 0.0366 0.0366 0.0366 

 (3.851) (1.259) (1.409) (3.844) (1.331) (1.446) (0.0472) (0.0292) (0.0301) 
specification 3: linear pre-trend and post period event study (in three time groups) 
MPP(t=0) 3.807 3.807* 3.807 3.466 3.466 3.466 -0.0372 -0.0372 -0.0372 

 (5.279) (2.263) (2.429) (4.568) (2.487) (2.647) (0.0696) (0.0630) (0.0598) 
MPP 
(t=1–2) 

7.614 7.614*** 7.614*** 8.596 8.596*** 8.596*** 0.0254 0.0254 0.0254 
(8.469) (2.193) (2.124) (8.744) (2.338) (2.201) (0.0841) (0.0633) (0.0508) 

MPP 
(t=3–4) 

4.346 4.346** 4.346** 5.045 5.045** 5.045** 0.0905 0.0905 0.0905 
(6.374) (2.052) (2.157) (6.157) (2.128) (2.146) (0.159) (0.0705) (0.0706) 

pre-trend 0.727 0.727 0.727 0.275 0.275 0.275 0.0368 0.0368 0.0368 
 (3.831) (1.256) (1.409) (3.822) (1.328) (1.445) (0.0467) (0.0292) (0.0300) 
            

cluster 
s.e. by: 

two-way: 
drug, 

country 

drug-
country country 

two-way: 
drug, 

country 

drug-
country country 

two-way: 
drug, 

country 

drug-
country country 

Panel B: compound-country-year panel (key estimates from specifications 1 & 2 are reported) 
MPPdct 16.83*** 16.83*** 16.83*** 18.81*** 18.81*** 18.81*** 0.201 0.201** 0.201* 
  (4.940) (2.754) (3.551) (5.761) (3.112) (4.007) (0.196) (0.0914) (0.111) 
MPP(t=0) -1.409 -1.409 -1.409 -4.193 -4.193** -4.193 -0.0800 -0.0800 -0.0800 

 (2.729) (1.734) (2.229) (3.328) (2.047) (2.706) (0.144) (0.0870) (0.100) 
MPP(t=1) -0.926 -0.926 -0.926 -0.0950 -0.0950 -0.0950 0.264 0.264*** 0.264** 

 (2.322) (1.770) (2.324) (2.546) (2.081) (2.882) (0.178) (0.100) (0.129) 
MPP(t=2) 3.267 3.267 3.267 3.239 3.239 3.239 0.491*** 0.491*** 0.491*** 

 (2.758) (2.018) (2.557) (3.125) (2.252) (2.993) (0.163) (0.107) (0.112) 
MPP(t=3) 11.06** 11.06*** 11.06*** 12.15** 12.15*** 12.15*** 0.546** 0.546*** 0.546*** 

 (4.854) (2.261) (2.966) (5.310) (2.397) (3.177) (0.231) (0.125) (0.141) 
MPP(t=4) 3.576 3.576* 3.576 3.417 3.417* 3.417 0.400* 0.400*** 0.400** 

 (3.410) (1.937) (2.264) (3.280) (2.037) (2.393) (0.224) (0.135) (0.153) 
MPP(t=5) 5.687 5.687** 5.687** 5.687 5.687** 5.687** 0.522** 0.522*** 0.522*** 
  (3.270) (2.331) (2.620) (3.362) (2.456) (2.743) (0.211) (0.142) (0.149) 

 
Notes: This table reports alternative estimation of diffusion with linear pre-trends, à la Greenstone and Hanna (2014) 
and Dobkin et al. (2018). Cross-column results are sensitivity analyses that cluster standard errors at different levels.   
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Appendix C: Legal Appendix   
Table C1: Key MPP license contract terms 

 

API 
code 

firm eligibility for 
sublicenses 
(manufacturing) 

sales 
scope: # 
countries 

sales outside 
territory 

royalty rates (in 
territory) 

technology 
transfer 

additional 
flexibilities 

ABC 
(ped.) 

ViiV worldwide 121  permitted if no 
granted patents or 
non-infringing  

0% n/a challenge 

ATV BMS worldwide 122  enables those not 
relying on BMS 
tech to sell if not 
infringe granted 
patents 

3%: adult forms in 
countries w/ patents; 
0%: ped., or sub-
Saharan/ India sales 

provided to all 
sublicensees, no 
obligation to use 

n/a 

BIC Gilead China, India, 
South Africa 

116  permitted if 
compulsory license 
issued 

5% of FP net sales. 
0% on API/ped. 
formulation. 

one time for Indian 
& South-African 
sub-licensees 

terminate; 
challenge 

COBI Gilead China, India, 
South Africa 

116  permitted if 
compulsory license 
issued 

5% of FP net sales. 
0% on API/ped. 
forms. 

one time for Indian 
& South-African 
sub-licensees 

terminate; 
challenge 

DTG 
(adult; 
ped.) 

ViiV worldwide adult: 94;  
ped.: 121 

permitted if no 
granted patents or 
non-infringing 

0%: all ped. & adults 
in 82 countries; 5%: 
Philippines, India, 
Vietnam, Moldova; 
7.5%: Egypt, 
Indonesia, Morocco, 
Armenia, Ukraine, 
Mongolia, Tunisia; 
10%: Turkmenistan 

n/a challenge 

EVG Gilead China, India, 
South Africa 

109  permitted if 
compulsory license 
issued 

5% of FP net sales. 
0% on API/ped. 
sales 

one time for Indian 
sub-licensees 

terminate; 
challenge 

FTC Gilead China, India, 
South Africa, & 
licensed on 
TDF, TAF, 
COBI, EVG, 
even if 
terminated 

116  possible if not 
infringe any 
granted patents 

0%; there may be 
royalties on other 
components of any 
specific 
combination 

n/a licensees 
terminated 
TDF can still 
benefit from 
no-sue on 
tdf/ftc, taf/ftc, 
& tdf/ftc/efv 

LPV/r 
(adult; 
ped.) 

AbbVi
e 

worldwide adult: all 
54 African; 
ped.: 102  

permitted if not 
infringe granted 
patents  

0% n/a challenge 

RAL 
(ped.) 

MSD worldwide 92  permitted if not 
infringe granted 
patents 

0% n/a challenge 

TAF Gilead China, India, 
South Africa 

116  permitted if 
compulsory license 
issued 

5% of FP net sales. 
0% on API/ped. 
sales 

one time for Indian 
sub-licensees 

terminate; 
challenge 

TDF Gilead China, India, 
South Africa 

116  permitted if 
compulsory license 
issued 

3-5% of FP net 
sales. 0% on 
API/ped. sales. 

one time for Indian 
& South-African 
sub-licensees 

terminate  

 

Notes: (1) common information omitted in the table: all licenses allow flexible compound combinations, all waive data exclusivity, 
all agree patents pooled include all pending and granted patents, and all agree to let WHO or a stringent regulatory authority (SRA), 
such as U.S. FDA, to help with quality-assurance. (2) A typical example for sales outside of territory when non-infringing is in the 
presence of compulsory license. (3) the sublicensing territory defines the manufacturing territory and the sales scope defined the 
countries available for sales using MPP licenses. (4) The “countries” defined in the sale scope (geographic territory) are 
economies/countries as in the World Bank/United Nations definition, but not necessarily a sovereign state (e.g., certain 
commonwealths are treated as an independent “country” in measures of economics/development). (5) API = Active Pharmaceutical 
Ingredient (i.e., compound, for small molecule drugs). FP = finished products. (6) Contracts regarding “manufacturing” in the MPP 
typically do not distinguish between API vs. FP manufacturers. (7) In the last column, “challenge” = allow patent challenges; 
“terminate” = allow termination of licensing agreements. Source: The MPP official website product page 
(https://medicinespatentpool.org/what-we-do/global-licence-overview/licences-in-the-mpp/), collected from each compound’s profile 
and corrected a few case with raw information from the MPP sub-licensing contracts. Last updated: 12/31/2018.   

https://medicinespatentpool.org/what-we-do/global-licence-overview/licences-in-the-mpp/
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Appendix D: Medical Appendix   
 

Brief Explanation of the Background and Classes of Antiretroviral Therapy 
 

Human immunodeficiency virus (HIV) infects the immune system’s cells, resulting in the 
impairment or destruction of their functions. Such an infection leads to the progressive deterioration of the 
immune system, generating immune deficiency. This deficiency can be defined as the condition in which the 
immune system can no longer fight any infection or disease. Unlike certain other viruses, HIV does not allow 
the human body to disinfect itself completely. Once a patient infected with HIV, that patient will have it for 
life. Consequently, acquired immunodeficiency syndrome (AIDS) can develop when HIV is left untreated. 
This stage of infection occurs when one’s immune system is badly damaged, making one vulnerable to 
opportunistic infections – infections that occur more frequently and severely among people with a weakened 
immune system. Such infections include tuberculosis and several cancers. Although AIDS is the final stage 
of HIV infection, not everyone who has HIV advances to this stage. An HIV infection can be contracted 
through three main routes: (1) unprotected sexual intercourse; (2) the sharing of contaminated syringes, 
needles, surgical equipment or other sharp instruments and transfusion of contaminated blood; (3) from a 
mother to her infant during pregnancy, childbirth, and breastfeeding.   

People with AIDS left untreated typically survive about three years on average. Once dangerous 
opportunistic illnesses develop, an infected person’s life expectancy without treatment falls to about one 
year. Although medical treatment is necessary to prevent the death of AIDS patients, no effective cure 
currently exists. However, with proper treatment, it is possible to control HIV. The medicine used for the 
treatment of HIV is antiretroviral therapy (ART). According to the WHO guidelines, standard ART consists 
of a combination of drugs to maximally suppress HIV and inhibit the disease’s progression. In addition, this 
therapy prevents further transmission of HIV. As a result, huge reductions in death rates and infection rates 
have been documented when using a potent ART regimen, especially in the early stages of the disease. The 
WHO recommends that people with HIV undergo ART as soon as possible after diagnosis without 
restrictions of the CD4 counts (a type of immune cells greatly reduced in HIV patients). It also recommends 
pre-exposure prophylaxis for people at high risk of HIV infection as an additional option among other non-
drug based comprehensive prevention plans.  
 

Table D1: ART drug classes 
 

Drug class (abbr.) Simple description (mechanisms of action explanations) 
Nucleoside Reverse Transcriptase 
Inhibitors (NRTIs) 

block reverse transcriptase, an enzyme HIV needs to make copies of 
itself.  

Non-Nucleoside Reverse 
Transcriptase Inhibitors (NNRTIs) 

bind to and later alter reverse transcriptase, an enzyme HIV needs to 
make copies of itself. 

Protease Inhibitors (PIs) block HIV protease, an enzyme HIV needs to make copies of itself. 
Fusion inhibitor (FIs) block HIV from entering the CD4 cells of the immune system, e.g., HR1.  
Entry inhibitor (EIs) block proteins on the CD4 cells that HIV needs to enter the cells, CCR5. 

Integrase Inhibitors (IIs) stop HIV from making copies of itself by blocking a key protein that 
allows the virus to put its DNA into the healthy cell's DNA.  

Enhancers help other ART work better by enhancing the blood levels. 
 
Notes: (1) the distinctions between FIs and EIs are not substantial, mainly on which protein the drug binds to block HIV 
virus from entering the CD4 cells. In many cases they are grouped together into one broader class. (2) Entry inhibitors 
have multiple sub-classes, e.g., CCR5 inhibitor, post-attachment inhibitor (the new compound, IBA), etc.   
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Table D2: Clinical Guidelines on ART Standard Dosing (U.S. adult daily doses) 
 

drug API code adult daily dose Notes 
ABC 600 mg  
ATV 300 mg  
DRV; TCM 800 mg  
ddI 400 mg 250mg/d if weight <60kg 
DTG   50 mg  
EFV 600 mg  
FTC 200 mg  
ENF; T20 180 mg  
ETR; ETV 400 mg  
FPV 1400 mg  
IDV 1600 mg  
3TC 300 mg  
MVC 600 mg  
NFV 2500 mg 2250 mg when taken 3 times/day 
NVP 400 mg Phase in: 200mg in the first 14 days 
RAL 800 mg  

r; RTV 200 mg The avg./mode: 100-400mg/d; 
depends on other compounds used 

SQV 2000 mg  
d4T   80 mg 60mg if weight <60kg. 
TDF 300 mg  
TPV 1000 mg  
ZDV; AZT 600 mg FDA: 600mg; WHO 250-300mg 
ABC+3TC 600+300 mg  
ABC+3TC+ZDV 600+300+600 mg  
ATV+r 300+100 mg  
EFV+FTC+TDF 600+200+300 mg  
EFV+3TC+TDF 600+300+300 mg  
EFV+3TC+ZDV 600+300+600 mg   
FTC+TDF 200+300 mg  
3TC+NVP+d4T 300+400+80 mg if <60kg, then 300+400+60 mg 
3TC+NVP+ZDV 300+400+600 mg  
3TC+d4T 300+80 mg  
3TC+TDF 300+300 mg  
3TC+TDF+NVP 300+300+400 mg  
3TC+ZDV 300+600 mg  
LPV+r 800+200 mg  

 
Notes: This table is used to convert active pharmaceutical ingredients (API) into standardized U.S. adult drug 
daily doses as a quantity-adjusted measure. Five observations in grey are dropped from the sample as they 
only appear in the data a handful of times. I checked drug dosing guidelines using AIDSinfo and FDA 
labeling, and consulted WHO guidelines for global standards. The above measures are recorded as adult 
daily dosing for a representative patient weighting over 60 kg (average adult weights are above 60 kg in most 
countries but can be smaller in low-income and developing countries). The localized doses can be smaller 
than the U.S. guideline in resource-limited developing countries. In the absence of country-specific clinical 
guidelines, I use this U.S. adult-based conversion as one outcome of interest.  
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Table D3: 2017 and 2012 top selling HIV drugs and MPP status 
 

The two tables here are used to demonstrate top-selling HIV drugs.  
 

Table D3.1: HIV drugs among 2017 top 200 drugs by global sales 
 

rank 
2017 

HIV drugs among top 200 
drugs by global sales, 2017 generic abbreviations MPP status (by 

12/31/2017) 
sales 
($M) 

24 Genvoya EVG+TAF+FTC+COBI all in 3,730 
31 Triumeq ABC+DTG+3TC out*+in+out 3,172 
32 Truvada FTC+TDF all in 3,169 

72 Prezista/Prezcobix/Rezolsta  [Prezista]: DRV; [Prezcobix/Rezolsta 
for US/Europe]:DRV+COBI 

out$;  
out$+in 1,821 

74 Tivicay DTG in 1,810 
75 Atripla EFV+FTC+TDF out+in+in 1,806 
100 Descovy FTC+TAF in 1,300 
109 Isentress and Isentress HD RAL out* 1,204 
120 Odefsey FTC+RPV+TAF out+in 1,106 
126 Stribild  EVG+COBI+FTC+TDF all in 1,054 
129 Viread TDF in 1,046 
139 Complera/Eviplera  [US/European]: RPV+FTC+TDF out+in+in 966 

191 Sustiva franchise (includes 
sales of bulk efavirenz)  EFV out 729 

196 Edurant/rilpivirine RPV out 714 
 

Table D3.2: HIV drugs among 2012 top 100 drugs by global sales 
 

rank 
2012 

HIV drugs among top 100 
drugs by global sales, 2012  generic abbreviations  MPP status (by 

12/31/2017) 
sales 
($M) 

26 Atripla EFV+FTC+TDF out+in+in 3574 
29 Truvada FTC+TDF all in 3,303 

67 Sustiva franchise (includes 
sales of bulk efavirenz)   EFV out 1,527                                                                                                                                              

68 Reyataz ATV in 1521 
71 Isentress RAL out* 1515 
76 Prezista DRV out$ 1414 

 
Notes: out* means restrictive MPP licenses (pediatric-only) and treated as outside the pool for conservative 
estimates. out$ means the corresponding drug is not officially in the pool but have price arrangements with 
the MPP. The top selling drug list is obtained from Med Ad News report and has been used in previous 
studies. For more details regarding the source, see Duggan and Scott Morton (2006).  
 
Reference: Duggan, M., & Scott Morton, F. M. (2006). The distortionary effects of government procurement: 
evidence from Medicaid prescription drug purchasing. The Quarterly Journal of Economics, 121(1), 1-30.  
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Appendix E: Case Studies on R&D 
 
To supplement the innovation results, I provide a few qualitative cases on new generic drugs 

that have stemmed from the MPP and firms’ decisions or reactions during the process. Although ex ante 
unclear, new products created by MPP generic licensees can benefit branded firms by offering a higher 
market value in developing countries outside the MPP territories. For example, the new single-pill once-
daily cocktail TLD was first approved by a generic firm in 2018 and recommended by the WHO as a 
starting therapy for treatment naïve patients in the same year. This WHO recommendation can 
potentially increase branded sales in other middle-income countries that are not covered by the pool.  

Branded firms are not active in developing pediatric formulations, partly because most pregnant 
women in the U.S. are tested for HIV. Mother-to-children transmission can then be prevented by 
suppressing the viral load during pregnancy with HIV drugs. The lack of a pediatric version mainly 
affects LMIC and low-income populations in developed countries. Under such a circumstance, pooled 
licensing can induce socially beneficial innovation by allowing generic firms to develop localized 
solutions. For example, the first pediatric granules formulation for lopinavir/ritonavir (LPV/r) was 
developed by generic firms with MPP licenses and gained FDA approvals in 2018. If needed, branded 
firms can be granted back low-cost non-exclusive licenses for patents on this new formulation.  

Once in the pool, branded firms may adjust R&D strategies accordingly. The case of Gilead’s 
pool participation and R&D decisions illustrate this point. Gilead joined the MPP in July 2011 and 
contributed several approved drugs, including tenofovir disoproxil fumarate (i.e., TDF, a prodrug of 
tenofovir).7 Gilead then started phase II trials of tenofovir alafenamide fumarate (i.e., TAF, a prodrug of 
TDF) in 12/2011, collected primary results in October 2012, and started phase III trials in 12/2012. The 
phase III trials on a TAF cocktail were completed with main results in 2014, and TAF was licensed to 
the MPP in the same year, before the 2015 FDA approval. It is worth noting that the earliest clinical trial 
of TAF was completed in 2003. Although a firm’s phase III trial decision can be affected by many 
factors, the timeline suggests that Gilead is at least not reducing R&D after MPP participation.8 

In addition, discussions with practitioners suggest that drug access programs can benefit branded 
firms by improving corporate image. This change can increase employee retention and attract 
institutional investors (e.g., pension funds) who would invest in firms that actively make a social impact. 
Generic licensing via the MPP can be a cost-effective way to reach these goals.  
  

 
7 Prodrug is an inactive compound that can be metabolized into a pharmacologically active form within the body. In 
many cases, prodrug can improve the absorption of a drug with lower dose and side-effects.  
8 Furthermore, Gilead started phases II/III trials on tenofovir-based microbicides in 2012, while the phase I trials were 
finished in 2008. Those trials are joint with partners in the public sector from South Africa. Because microbicides 
belong to a new drug class that is more valuable to developing countries, Gilead’s decision may reflect a combination of 
factors, among which can be its engagement with the MPP.  
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Appendix F: R&D Results in New Drug Approvals 
F.1 Innovation and Imitation: Overview and Exploratory Analysis  

HIV drug approvals are used to analyze R&D outputs next. All FDA and WHO approvals of 
a new product at the drug-strength-dosage form-firm level are examined. These approvals are 
obtained by either branded or generic firms and include tentative generic approvals that only allow 
for sales in LMIC. At the drug level, a drug innovation is either an original approval of a new 
compound or the first approval of a cocktail, whereas a drug imitation is a follow-on product from 
the same drug at a chemical level but at a different strength-dosage form or by a different firm. At 
the drug product level (i.e., drug-strength-dosage form), a product innovation is the first approval of 
a drug in a formulation (strength-dosage form) by the first applicant, while product imitations 
include follow-on approvals of the same drug product by other firms. Not all approvals are US-
marketable, but all of them reflect the qualification of approved products.  

Although branded drug makers are leaders in new compound development, generic firms 
develop many new cocktails and products. Among the 30 first approvals of drugs with already-
approved compounds, 27 are new drug cocktails (Table B9). Among these 27, 13 new cocktails 
were first created by generic firms, with the constituent compounds owned by 2.31 branded firms 
on average. In contrast, new branded cocktails have bundled compounds owned by 1.47 branded 
firms on average, through intra-firm bundling or cross licensing between two firms. This pattern 
shows an important role that generic firms play in innovation and their comparative advantage in 
cross-firm bundling. The pattern is similar at the drug product level, where generic firms capture a 
higher share of new products approved when strength and dosage forms are considered.  

The relationship between MPP and “time to first generic” is analyzed in a sample includes 
cases where a drug product is first approved generically for a given drug-strength-dose after all of 
its underlying compounds are approved (i.e., it is technically feasible to produce a drug generically). 
Histograms (Figure B7) show that the average “time to first generic” product is shorter for drugs 
with MPP compounds. Table B10 reports Cox proportional hazard models and linear models that 
regress “time-to-generic” on an MPP indicator and fixed effects at year and drug class levels. The 
results suggest that products with MPP compounds have higher odds for an approval (positive 
coefficient in Panel A) than do the alternatives, and the “time-to-generic” is shorter for a drug with 
MPP compounds (negative coefficient in Panel B). These analyses provide suggestive evidence that 
the MPP is associated with faster generic approvals.  
 
F.2 Does the Patent Pool Induce More Follow-on Drug Product Approvals? 

The empirical strategy is identical to that used in the clinical trials analysis except the 
outcomes are now the number of new approvals at the drug and compound levels. Firms appear to 
have obtained more follow-on drug product approvals for compounds in the pool relative to those 
that enter the pool later or outside the pool (Table F1), including generic approvals of new cocktails 
(innovation) and more firms gain generic approvals of existing drugs with pool-covered compounds 
(imitation). The MPP-induced increase in new drug product approvals is about 0.5 more approvals 
per year in pool-related drugs and is robust across specifications (Panel A columns 1-2). The 
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increased product approvals are driven by generic firms, which create new cocktails and existing 
products at lower costs. This is consistent with the regulatory standards that exempt generic firms 
from new trials when the underlying compounds were previously approved. The estimates are more 
precise statistically when the MPP treatment is measured as a percentage to capture changes in the 
extensive and intensive margins (Panel B).  
 

Table F1: Innovation Analysis - Drug Approvals 
  

(1) (2) (3) (4) (5) (6) 
Dept. Vars. # new approvals # new approvals generic # new approvalsbranded 
Panel A: Drug-Year Analysis, 𝑀𝑃𝑃𝑑𝑐𝑡 as {0, 1} dummy 

𝑀𝑃𝑃𝑑𝑡 0.555** 0.517* 0.445 0.508* 0.110** 0.00870 
(0.261) (0.280) (0.271) (0.278) (0.0482) (0.0550) 

Panel B: Drug-Year Analysis, 𝑀𝑃𝑃𝑑𝑐𝑡 as % compounds in the pool 
𝑀𝑃𝑃𝑑𝑡 0.749** 0.711** 0.616* 0.670* 0.133** 0.0410 

(0.321) (0.341) (0.338) (0.341) (0.0604) (0.0641) 
drug & year FEs Y Y Y Y Y Y 
Xdt control 

 
Y 

 
Y 

 
Y 

LHS mean 0.70 0.70 0.61 0.61 0.09 0.09 
Observations 798 798 798 798 798 798 
       

Panel C: Compound-Year Analysis 
𝑀𝑃𝑃𝑎𝑡 2.418** 2.607** 2.034** 2.478** 0.383** 0.129 

 (0.908) (0.993) (0.961) (0.980) (0.143) (0.140) 
comp. & year 
FEs 

Y Y Y Y Y Y 

Xat control  Y  Y  Y 
LHS mean 2.28 2.28 2.01 2.01 0.27 0.27 
Observations 378 378 378 378 378 378 

 
Notes: This table reports the results of estimating Equation (3). Each adjacent two columns share the same 
dependent variable in different specifications. Panels A and B differ in how the treatment variable is defined: as an 
indicator or percentage. Robust p-value: *** p<0.01, ** p<0.05, * p<0.1. 
 

These findings are robust to a sample where drugs are de-bundled to the compound level, 
and the estimates become larger (Table F1 Panel C). This result is expected as now the MPP effect 
captures the follow-on drug product approvals involving a compound in either standalone or 
cocktail form. These results are consistent with the hypothesis that follow-on approvals with pooled 
compounds are often developed as cocktails instead of as simple compound-level imitations, 
suggesting higher social values derived through competition among new and existing cocktails. All 
the results are robust to count data model using negative binominal (Table B11).  
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Figure F1: Event Studies for Innovation Analysis: New Drug Product Approvals 

 

Notes: The dots are point estimates of differences in outcomes between treated and control groups. Unit: 
compound-year level. The whiskers correspond to 95% confidence intervals.  
 

Event studies support the drug approval analyses (Figure F1). In both cases, there are no pre-
trends in total new approvals and those by generic firms. For follow-on approvals by branded firms, 
the pre-trends do not significantly differ from zero but are noisy. Comparing graphs cross-column 
within panel, most of the new drug or compound-level approvals are driven by follow-on generic 
product approvals, suggesting large imitation-based responses. New branded approvals do not 
substantially change in these figures once controlling for initial approvals. Across panels, event 
study responses are larger when cocktails are de-bundled into compounds. Overall, the responses in 
innovation suggest that firms outside the pool are responsive to the increased expected return to 
technologically feasible products when barriers to entry are reduced. Within the set of innovation 
outcomes, clinical trials rise larger and faster than drug approvals, because the former can be 
initiated without FDA oversight, while the approval also involved FDA review and can take longer. 
 


