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Abstract

It is well known that uncertainty is a key consideration in theoretical health economics analysis.
The literature has shown that uncertainty is a multifaceted concept, with the individual’s optimal
response depending on the formal nature of the uncertainty and the time horizon involved. This
paper extends the literature by considering uncertainty with regards to the cumulative effect on
health capital of on-going health behaviours. It uses techniques of stochastic optimal control to
analyze uncertainty which can be represented as a Weiner process and shows how, in a Grossman
health investment framework, the optimal lifetime health investment trajectory might be affected.
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l. Introduction

Uncertainty has been a key element of theoretical health economics since Arrow’s (1963) paper on
health insurance. As Grossman’s (1972) health capital framework came to prominence, the angle
through which uncertainty was viewed shifted slightly, adding a production and investment perspective
to the original insurance perspective. Whichever perspective a particular case happened to call for,
though, one thing which was clear from the early days of the analysis of uncertainty in health economics
was that the term uncertainty meant different things in different contexts, and that even when the
literature referred to basically the same type of uncertainty, the context, or the structure of the model
within which the uncertainty operated, played a significant role in determining the consequences of
uncertainty.

Dardanoni and Wagstaff (1990) classified uncertainty as type 1 or type 2 depending on whether, as in
the former case, it referred to uncertainty about the individual’s pre-treatment state of health or, as in
the latter case, it referred to uncertainty about the effectiveness of medical care. They also formalized
the characterization of uncertainty, focusing on the Rothschild-Stiglitz (1970) concept of increasing or
decreasing risk through mean preserving spreads or contractions, and also discussing combinations of
changes in the mean and the spread of the distribution of the health variable. Their analysis set out the
factors which affect the individual’s optimal response to such changes as first order stochastically
dominating shifts of the distribution of the random health variable, and points to the fact that third
derivatives of the individual’s utility function, U(C,H), where H is health and C is consumption of non-
health related commodities, play a key role in determining the individual’s response to changes in health
risk. Following Dardanoni (1988), they interpret these third derivatives in terms of a two-good index of
absolute risk aversion.

Dardanoni and Wagstaff introduced uncertainty into a one-period Grossman-type model. One point
which the later literature has made clear is that the length of the individual’s optimal planning horizon is
critical to her response to uncertainty. Thus Eeckhoudt and Gollier (2005), working with a one period
model and using Kimball’s (1990) utility-based measure of prudence, which involves a third derivative of
the utility function, find that greater prudence tends to be negatively associated with optimal preventive
effort. Menegatti (2009), however, shows that the Eeckhodt and Gollier result depends on the one-
period nature of the model and is reversed when you shift to a two-period framework, and, in a non-
health context, Huggett and Vidon (2002) show that the results of a two-period model can be changed
completely when the time horizon is extended to three periods. Clearly the answer to the question
about the effect of uncertainty in a Grossman-type model depends crucially on the context surrounding
the question.

With regards to the issue of time horizon, the Grossman model is often set up as a continuous-time
optimal control problem, either with an infinite or a finite horizon. Cropper (1977) introduces
uncertainty into an optimal control version of the health investment model. Here the nature of the
uncertainty is a critical element: Cropper assumes that shocks are short term and mean reverting. She
defines two possible outcomes — healthy and unhealthy — and makes a clear distinction between health
capital and illness (Cropper (1977) pg. 1274). Her focus is on illnesses which do not have a permanent
effect on the individual’s health capital. Health Capital can be thought of as the ability of the body to
resist disease: in Cropper’s model it is not the individual’s stock of health capital which is uncertain but
rather her level of exposure to germs on any given day, meaning that on any given day, if we compare



two individuals who have the same level of health capital, one might be well and the other sick, simply
because of their degree of short term exposure to germs and viruses. The individual’s stock of health
capital defines her degree of resistance to germs: if on any given day the random variable which is her
level of exposure to illness takes on a value which exceeds her degree of resistance to illness, she is
classified as sick and her level of utility is set to zero for that instant. If her exposure is less than her
resistance level she is classified as healthy and her utility at that instant is determined by a U(C,H) type
utility function. Thus, although her expected degree of exposure to illness might prompt her to invest
more heavily in H, raising her resistance level, the fact of being ill at one instant does not affect her level
of health capital (or, indeed, her level of exposure) in the next instant.

Liljas (1998) extends Cropper’s model by allowing for a continuum of health states rather than a simple
healthy/sick dichotomy. Like Cropper he works in a continuous time framework, although because he
sets the problem up as an isoperimetric problem he does not have variables representing the shadow
price of health capital at each instant (co-state variables) and does not use a phase diagram
representation. Liljas expresses his results in terms of Euler equations which define the optimal
trajectory for the individual’s stock of health capital. This approach highlights the difference between
the Euler equations for health capital in the non-stochastic and extended-Cropper versions of the model,
but has limitations when it comes to giving a sense of how the individual’s optimal trajectory changes
over the long run. Liljas’s results also depend on the third derivative of the utility function, although he
uses this primarily in a proof.

As noted above, Cropper-type intertemporal optimization models introduce uncertainty in a manner
which affects the likelihood that the individual will be sick at any given point in time, and as a
consequence have her instantaneous utility reduced, but which does not directly affect her stock of
health capital in the future. In these models, the effect of illness on health capital operates through the
individual’s health investment decisions, in that awareness that she lives in an area where her exposure
to germs is more likely to exceed her degree of resistance might prompt her to invest more in H. Thus
Cropper-type models deal with minor ilinesses, and investment in health can be thought of as a form of
preventive care. Curative care, on the other hand, would be spending on health-related goods in
response to an illness which did reduce H permanently and would only occur after a major illness had
struck. In a Grossman framework we can still think in terms of the possibility of preventive health
investment which reduces the likelihood of a falling victim to a major illness, the eventuality of which
illness is a single realization of a stochastic health shock variable, but we must also recognize that once a
major illness has struck and the individuals’ stock of health capital has been permanently reduced, she
must re-plan her post-illness health investment trajectory.

This type of major iliness was studied in a simulation framework by Picone, Uribe and Wilson (1998), and
modelled as a stochastic optimal control problem incorporating Poisson-type shocks to Health capital by
Laporte and Ferguson (2007). Picone et al. (1998) simulate the optimal health investment trajectory for
an individual who knows that at each instant in time there is a probability that she will suffer a major
illness, but who does not actually do so. Laporte and Ferguson (2007), using a generalized Ito’s lemma
approach, incorporate Poisson-type shocks (in which there is a certain probability that the individual will
be struck by a major iliness at each instant in time but in which, as in most periods, if the illness does not
strike, her health is unaffected) into the individual’s lifetime optimal health investment problem and
show how the phase diagram for the theoretical problem is modified, and also use the phase diagram



approach to illustrate, qualitatively, how the occurrence of a major illness will cause her to alter her
future investment trajectory.

Thus Cropper-Lijlas type shocks are experienced every day but are not cumulative in health capital while
Poisson type shocks are experienced only rarely but, should they occur (which they might not) do have a
permanent effect on one’s stock of health capital. There is another form of stochastic element in health
which in a sense combines aspects of the first two. These are cases where health behaviours which
occur every day have a small impact on one’s stock of health each day but potentially have a large
cumulative effect over time, the magnitude of which is uncertain.

Consider for example, soft drinks and potato chips. An individual who consumes these items regularly
knows that they will be bad for her in the long run but does not see a significant effect from day to day
and also does not how bad they will be for her in particular in the long run. What she knows is in a
sense is population level data-she has a sense of the population average impact on health of the daily
consumption of soft drinks but she also knows that some people are more affected by them than others,
and she does not know in advance where her particular metabolism will place her within the distribution
of health damage. Thus we have a case where we know that regular daily consumption of a particular
commodity will cause a downward trend in individual health capital and the spread around the trend
gets wider the longer the process goes on, reflecting in a sense unobservable heterogeneity in
metabolism. The same kind of uncertainty could surround positive health behaviours like eating healthy
and exercising in the sense that again the individual may know the population average effect but does
not know whether her eventual particular benefit will be at the high or low end of the distribution of
benefit around the population mean. This is the type of health investment which we will be considering
in this paper.

For our purposes the key feature of this sort of uncertainty is that not only does H cumulate over time as
a result of the health investment process, but so too does uncertainty about H. The individual’s
expectation about the effects of her ongoing health investment activities are based on her reading of
health-related articles in newspapers, but because she does not know exactly how her own physiology
will respond to the investment activity, each new unit of health investment has its own zero-mean
uncertainty element attached to it. While the variance of the instantaneous stochastic elements are
unchanged from period to period, over time her uncertainty about the outcome of her activities will
cumulate, so that, when she contemplates her lifetime investment trajectory from the point, early in
life, when she first makes her health investment plan, the further into the future she looks the greater
the uncertainty about what the cumulative effects of those activities will be. Thus as she looks further
into the future she essentially sees her health as a random variable with an expectation and with a
variance which is increasing as time passes, so long as she continues her activities. Mathematically we
will represent this effect by using the techniques of stochastic control, with uncertainty represented by a
Wiener process.

In this paper we explore the impact on the optimal health investment trajectory of adding this type of
uncertainty to a Grossman model. We begin by setting out a deterministic optimal control version of
the Grossman investment in health model. We then set out a stochastic control version incorporating a
Weiner process and discuss why we think the Weiner process is the most suitable mathematical form to
characterize this third type of uncertainty. Following that we solve the stochastic control problem and
use a phase diagram to illustrate the comparative dynamics of the deterministic and stochastic problems



in terms of the effect of Wiener type uncertainty on the optimal health investment trajectory. We then
discuss the interpretation of the new terms which the stochastic process adds to the equation for the
health investment trajectory and place our result in the context of the broader economic literature on
choice under uncertainty.

Il. Deterministic Version

We begin with a simple one-state variable case of the Grossman model, set within a continuous time
optimal control framework. The individual aims to maximize her discounted lifetime utility:

(1) Max [, U(C, H)e Pt dt Uc>0, Uc <0, Uy >0, Upy < 0, Ugy = 0

The individual’s utility is a function of C, which stands for non-health-related consumption goods, and H,
health capital. p is the individual’s subjective discount rate. The stock of health capital evolves according
to:

(2) H=1- 6H,0<86<1,120
In equation (2), | is health investment, and & is the rate of depreciation of health capital, which we
assume is constant, so that when the individual undertakes no health investment activity (I1=0) her stock
of health capital will decline at a constant rate 6.

The individual is assumed to have an instantaneous budget constraint which must be satisfied each
period:

3) Yy=C +PI

Here Y is instantaneous income which we treat as exogenous to the individual. Health investment, I, can
be purchased in the market at a price P and the price of non-health related goods C is set to 1, so that
income is measured in real consumption terms and P can be thought of as the relative price of health
investment goods.

The Hamiltonian for this version of the Grossman problem is:

@ A= U, Pl H) + W[ - 8H]

where we have used the budget constraint to substitute for C in the utility function. Here, W is the co-
state or shadow price of an additional unit of H.

We are interested in depicting the evolution of the individual’s | and H over time - in other words in her
optimal lifetime health investment trajectory. To solve this problem we begin by finding the first-order
condition for the choice variable |, and then take advantage of the fact that the first order condition
must hold at all t to generate an equation of motion for | to go with (2), the equation of motion for H.
We then define the stationary loci for each of | and H. The stationary loci have the property that when
the individual is on it there is no inherent tendency for the variable in question to change, so that along
the H locus H=0 and along the | locus [=0. The advantage of defining stationary loci is expositional: it



lets us draw a phase diagram in (I,H) space and divide the space into regions where | and H have intrinsic
tendencies to rise or fall as time passes, which we identify on the phase diagram using phase arrows."

The first order necessary condition for the problem (assuming an interior solution for I) is:
(5) pUc+W=0

Which can be written in marginal benefit equals marginal cost form:
(6) W= PUc

The left hand side of (6) W, is the shadow price of another unit of health that comes from investing a
unit of I. The right hand side is the marginal cost of an additional unit of I, which is the number of units
of C that have to be given up in exchange for an additional unit of | multiplied by the utility value (U.) of
each unit of C.

The other condition which must be satisfied for dynamic optimization is the Pontryagin necessary
condition which defines the equation of motion for W:

@ w=pw- H,

=pW - [Uy-6y]
=[p+8]Y- Uy

Both conditions need to be satisfied and although (6) will hold for each t, we see from (7) that
changes over time which means that the value of | which causes (6) to hold will also change throughout
the individual’s life.

To derive an equation of motion for | we differentiate (6) with respect to t to yield:

(8) P2Uccl— PUcyH+ Y =0

From which we obtain:

PUcyH-1

() I'= [P2Ucc]

The equation of motion for | in (9) tells us how | must change over time as H and { change over time in
order that the necessary condition for | continues to hold for all t. Further, since (6) and (7) must hold

for all t we can substitute for H and 1/) giving:

[Unl-[p+8]PUc+ P[UcyllI-6H]
PZUCC

(100 I=

'see Ferguson and Lim (1998) for an outline of the technique to generate and interpret phase diagrams.
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Expressions (2) and (10) are used to derive the stationary loci for H and | respectively in the phase
diagram depicted in Figure 1.

[FIGURE 1 ABOUT HERE]

Figure 1 shows the stationary loci for | and H and the phase arrows for both variables in the four
segments of the diagram. It also shows the equilibrium for the system, at point E, and the stable and
unstable branches pointing to and away from E. If ours were an infinite horizon problem, the
individual’s optimal trajectory would coincide with a stable branch to E. Since our individual is finite-
lived, and knows it, her optimal trajectory will in fact be the one labelled A. We have drawn Figure 1 on
the assumption that our individual is born healthy — i.e. that her initial level of health capital, Hy, is high.
Her optimal trajectory will involve a relatively low initial level of health investment; below, in fact, the
level necessary to hold H constant, so her optimal H will decline from its high initial level. Through the
first part of her lifetime trajectory | will rise, slowing, but not halting, the decline in H then, when
trajectory A cuts the stationary locus for I, her optimal level of health investment will begin to decline.
The transversality conditions for the finite horizon version of the Grossman problem require that |
reaches zero at or before T, the ending time for the problem® Thus the optimal trajectory for an
individual born healthy® takes the inverted-U shape of trajectory A in Figure 1. In going over to the
stochastic control version of the problem we will use the phase diagram to show how, qualitatively, the
addition of a certain type of uncertainty alters the shape of our individual’s optimal lifetime health
investment trajectory.

1l. Stochastic Version

In this section we consider the model

(11) MaX E[[U(Y — PI,H)e Ptdt]

Subject to
(12)  dH =[I - 6H]dt + oydz4

Here in addition to the standard Grossman notation, H is stochastic, obeying a Weiner process.
Equation (12) is the stochastic counterpart of the H equation of the deterministic version of the model,
and the first element in the dH equation is in fact the RHS of the H equation. In (12), that term is
referred to as the drift — in this case a controlled drift since H could drift up or down depending on the
value of I. In particular, if | = 0, H will drift down, in the same way as H declines over time in the

> On the analytical details of the non-stochastic Grossman model see Laporte (2015).
*If she were born unhealthy, so that Hy was well to the left of point E, her initial | would be high, causing H to rise
through the first part of her lifetime before beginning to decline so that the transversality condition would hold.
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deterministic case. The new element in (12), o4dz, represents the Wiener process which characterizes
the uncertainty associated with the evolution of H as time passes.

The Mathematics of a Wiener Process

We noted above that we want to consider the case in which not only is H stochastic but uncertainty
about the level of H increases over time. To do this we introduce a Wiener process, or Brownian
motion, to the evolution of H. The Wiener process is a continuous stochastic element and adding it
essentially means that H is subject to uncertainty at every instant in time. The basic assumptions of a
Wiener process are set out nicely by Mangel (1985)*. We define a stochastic process, Z(t), where

(i) Sample paths of Z(t) are continuous
(ii) Z(0) = 0, so we know the initial value of our variable with certainty
(iii) The increment Z(t + s) — Z(t) is normally distributed with mean 0 and variance o’s, where

s is the length of the interval. Thus the variance of the increment in Z depends on, and
increases with, the length of the period ahead, over which we are looking.

In continuous time applications of Wiener processes we let s = dt, a small increment in time. Then
defining dZ = Z(t+dt) — Z(t), we have

(13)  EdZ=0, E(dZ)’ = dt, EdtdZ=0

In (13) the Expectations operator, E, is present because the increment dZ is a normally distributed
random variable. The third of the expressions in (13) arises because dZ is on the order of magnitude of
the square root of dt. Along with the assumption that (dt)* = 0, which follows from the assumption that
dt is an infinitesimal, (13) constitutes the rules of multiplication of Wiener terms.

Wiener processes are continuous time processes, but because they represent continuous shocks, and
therefore a series of continuous, if infinitesimal, jumps, they are not differentiable using ordinary rules
of calculus. In essence, this means that dZ/dt does not exist in the usual sense. A Wiener process
basically represents a variable whose time path is all corners, or spikes. Thus we have to adopt the Ito
Calculus for problems involving them.

In economic applications, we are generally not interested in Wiener processes per se, but in the
behaviour of variables which are functions of Wiener processes — i.e. variables whose behaviour over
time is subject to the continuous random shocks characterized by Brownian motion. Thus we can define
a variable x such that

(14) dx = adt + odz

where dz represents the Wiener process. In the absence of the dz term we would have dx = adt, and
dividing through by dt we would have dx/dt = q, or, in the notation used for time derivatives, x = a. We
cannot, however, simply divide through in (14) by dt, as in

(14a) dx/dt=a + odz/dt

* See also Ferguson and Lim (1988)



because dz/dt does not exist in the usual sense. We can, however, use the Ito calculus to analyze the
effect of the Brownian motion type of uncertainty driving the Wiener process on a variable which is
itself a function of x — e.g. on y = f(x,t). In doing so, note that we can take the expectation of (14):

(15) Edx = Eadt + Eodz = Eadt = adt

Since o, the variance scaling term, is non-stochastic, as are a and dt, and Edz = 0. Then we divide
through by dt, giving an expression which we write as

(16) [Edx]/dt = a.

Expression (16) refers to the expected instantaneous change in x as time passes, which we refer to as
the drift term in x. Note that the drift in the stochastic x is the same as the actual time change in xif 0 =
0, i.e. if x were non-stochastic. It is not, however, necessarily the actual change in x over an infinitesimal
interval of time — that will be a combination of the drift plus noise.

In our particular application we have
(17) EdH = [I — 6H]dt, so that EdH/dt = [| — 6H], the instantaneous drift in H and
(18)  Var(dH) = E[dH — EdH]? = E[odz]? = o’dt

Here equation (18) is the variance of the stochastic process which defines the instantaneous change in
H. If we take the stochastic integral of our process, obtaining an expression for H as a function of
elapsed time, we see why we say that the variance of H increases the further ahead we look.

The key to the use of the Ito calculus in stochastic control problems is that, although time derivatives
may not exist in the usual sense, other derivatives do. Ito’s approach to analyzing the behaviour of y is
to take a second order Taylor Series expansion to df(x,t):

(19) dy = df(x,t) = fu(x,t)dX + ¥ fex(%,)(dX)* + fu(x,t)dt + % fre(x, 1) (dt)? + fie(X,t)dxdt
Next replace dx by adt + odz everywhere, giving:

(20) dy = f(x,t)[adt + odz] + % fu(xt)[adt + odz]® + fx,t)dt + ¥ fu(x,t)(dt)® + fe(x,t)[adt +
odz]dt

Multiplying this expression out gives:

(21)  dy = f, adt + f, odz + % f@?[dt]® + % f 0°[dz]® + % i [200 dt dz] + f, dt + % fy, [dt]® +
fea[dt])? + feodzdt

Next, taking the expectations operator through and applying the rules of multiplication for Wiener
processes, plus the fact that [dt]* is vanishingly small even in the absence of uncertainty, gives:

(22)  Edy =f, adt + % f, o’dt + f, dt



From which we obtain:

(23)  [Edyl/dt = [fa + % f 0° + ]

Note that in the non-stochastic case we would have
(24) dy/dt=f, a +f;

Where f; represents any trend element in y which was not inherited from x. The drift term in (23) differs
from the time trend in the non-stochastic case, as set out in (24), by the addition of the term f,, 0%/2.
Assuming that both the non-stochastic and the stochastic examples start from the same point, the
difference between the non-stochastic trend and the expected drift depends on the concavity or
convexity of f. If f, >0 and f,, < 0, so that f is concave in x, the effect of the Wiener process is to pull the
drift down relative to the non-stochastic trend (note that the actual time path of the stochastic y will
depend on the actual realizations of the Wiener process). Thus the presence of the Wiener process in x
has an impact on the drift of y, but that impact will vary depending on the shape of the functional
relation between x and y. In addition, even if a and f; are zero, so there is no trend in x or in the
deterministic equation for y, the drift term in the stochastic equation for y will be

(25)  [Edyl/dt = fy 0’

so the presence of the Wiener process will add a drift, positive or negative depending on the sign of f,,,
with magnitude depending on the magnitudes of f,, and of o>

The fact that the presence of Wiener-type noise in x can produce drift in y even when there is no drift in
x is a Jensen’s Inequality effect. The upward and downward shocks to x are assumed to be identically
distributed. If we assume that f(x) has the usual concave shape of a utility function, with f, > 0, f,, < 0,
each upward step in x will produce an upward step in y and there will be the same number of upward as
downward steps in y, but if we compare the effect of an upward step in x with that of a downward step
of equal magnitude in x, the upward step in y produced by the upward step in x will be smaller than the
downward step in y produced by the (equal magnitude) downward step in x. Thus over the long run,
when x is hit by an equal number of identically distributed upward and downward shocks, y will have an
equal number of upward and downward steps but the downward steps in y will tend to be larger than
the upward steps. The result is that even though x will not have any particular drift over the long run
(although it might appear to have drift in the short run if for example, it happens to be hit by a string of
upward shocks), y will tend to have a downward drift over the long run.

To introduce this sort of uncertainty into our optimal control problem we adopt the approach in Pindyck
(1982). This involves starting from what is essentially a dynamic programming approach to the problem
and using either the standard calculus or the Ito calculus as appropriate in deriving what is in effect a
stochastic Hamiltonian problem®. We can use the standard calculus in taking derivatives which do not
involve the Wiener process: in effect we could take second order Taylor Series expansions in place of the
first order ones which the standard calculus involves, then invoke the rules of multiplication from the Ito
calculus to make the second order terms vanish. In effect, the Ito calculus extends the standard calculus
to the stochastic case, and if there is no stochastic element in a particular differentiation, the two

> For an alternative method of defining a stochastic Hamiltonian equation see Malliaris and Brock (1982).
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approaches give the same result. Broadly speaking, Pindyck’s approach has two defining characteristics.
One is that it replicates the steps used in deterministic optimal control analysis, giving a stochastic
equation of motion for the addictive commodity, or drift term, for the control variable, which can be
compared with the equation of motion derived from the deterministic case. The other is that, unlike the
dynamic programming approach, it eliminates direct reference to the value function and therefore does
not require an assumption as to a functional form for the value function. General assumptions still need
to be made about the functional form of the instantaneous objective function, but we can, in a sense,
focus on those rather than making them fit an explicitly solvable form for the value function.

V. Solving the Stochastic Control Problem
We proceed by denoting expression (11) as J(H,t) and write, in dynamic programming form,

(26)  J(H,t) = Max, E[U(Y = PI, H)e®'dt + J(H+dH, t + dt)]
= Max; E[U(Y =PI, H)e®™'dt + J(H, t) + JudH + % Juu(dH)? + J,dt]

Substituting and carrying the E operator through we have

(27) 0= Max [U(Y = pl, H)e®'dt + Ju[l — SH]dt + % Juy oy dt + J,dt]
From which we can eliminate the dt terms:

(28) 0= Max [U(Y =PI, H)e® + Jyl = 8H] + % Jy 04> + 1]

From (28) we find the FOC for I:

(29)  -PUce®™+1y=0

Which we write as

(30)  Jy=PUce®™

Taking the Ito derivative of (30) we have

(31) - EdJy= —pPUce " + Pe™P*—EdU,

which we will expand later.

Differentiating (28) with respect to H and invoking the envelope theorem gives

(32)  —EdJy = 6]y — [Unle ™"

10



where we have used the fact that Juy[1 — 6H] + YJuunOn” + Jue can be written as [EdJ4]/dt to give us the
left hand side of (32).

Substituting from (30) for J4 in (32) gives
(33) —-Edjy = SPUce ™" — Uye ™"
Then equating (31) and (33) gives

(34)  —pPUce ' + Pe P —FEdUc = 6PUce ™" — Uye "

Which can be re-written as

(35)  Pe™P—EdUc = [p + 6]PUce Pt — Uye™#*

. .. -pt
From which we can eliminate the e® terms:

(36)  P—EdUc = [p + §]PUc — Uy

In order to evaluate the left hand side of (36) we need to take a second order Taylor series expansion of
dUc(Y =PI, H). To do this, let F(I, H) = Uc(Y —PI, H). Then:

(37)  dF(LH) = Fdl + % Fy(dl)* + FidIdH + FudH + % Fru(dH)>

Looking at the component elements of dF we have
(38a) Fy=-PUcc

(38b)  Fy=P°Uccc

(38c)  Fiy=-PUccy

(38d) Fy= Ucx

(38e)  Fun=Ucun
Substituting into (37) we have

(39)
—EdU; =

P2 UCCC 1

—PUcc - Edl + E[dI]? = [PUccy] - EdldH + [Ugy] 3 EdH + 224~ Elapy?

11



Making the substitutions from the Ito rules for multiplication, we have:

(40)  —EdUc = —PUcc—-Edl + P Zeec
[UcHH ]
2

E[dI1? = [PUccy] - EdIdH + [Ucy ][I — SH] +

oi

Which from (36) must equal

(41) [p+8]PUc—[Uy]
P
Thus we have

[p+6]1PUc—[Uy]- P[Ucy][I-6H]
P

P? UCCC 1
d

(42)  —PUcc— L Edl +

[UcHH ]
2

E[dI]? — [PUCCH]iEdIdH =

JH

Where we have isolated the remaining dl terms on the left hand side. Now write | as a function of H:
I(H), and find the appropriate Taylor series expansions:

(43)  dI = lydH + % ly[dH]?

From which we find that
(44a)  [dI)? = I [dH] = Ix%04° dt
and

(44b)  dIdH = lyo, dt

Which lets us write

(45)
~PUgco-Edl =
[p+81PUc—[Uy]- P[UcyllI-6H] U P2U
prolfbe-lbul Moonllon] _ Reamlor — Z0eCii2of] + [PUgeullnod

And, dividing through by -PU:
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(46) %Edl _  Unl-[p+8]PUc+ P[Ucy]lI-6H] Weunt] 2 , P?Uccc [1262] — [WUccHl

H IHUI-ZI
P2Ucc 2PUcc 2PUcc Ucc

which we rearrange as:

1 _ U l-Ip+6]PUc+ P[UcHl[I-SH] [Wenn —2PUcculn] 2 Uccc  _21py2
(47) " EdI = P20 + U o + 2pu g O [PIf]
V. Establishing the optimal trajectory under uncertainty.

The first element on the right hand side of (47) is the | expression from the non-stochastic Grossman
problem. This will give us a starting point for interpreting our results, both in terms of equation (47) and
in terms of the phase diagram for the stochastic problem. The remaining two terms are effects which
follow from the introduction of the stochastic element. They are made up of third derivatives of the
utility function U(C,H), recognizing that C and H are linked by the budget constraint which ties the values
of | and C together and by the production function for H which ties H and | together. The stochastic
element in H is transmitted to | through the intertemporal optimal investment decision, and changes in |
which are consequences of uncertainty about the inherent evolution of H necessarily have
consequences for C. (This is a case of the situation discussed by Dardanoni (1988).) Because the utility
function is a function of H and C alone — | does not appear in the utility function — we do not have any U,
terms, only Uc terms.

The presence of the often hard to sign third derivatives is a standard feature of problems of choice
under uncertainty. One point to keep in mind in trying to interpret these terms is that they can also be
read as second derivatives of marginal utility terms — thus Uccc is both the third derivative of U(C,H) with
respect to C and the second derivative of the marginal utility term, U¢(C,H) with respect to C. This latter
interpretation is important since we are concerned with the level of a choice variable, and optimal levels
are determined by marginal, more directly than total, utilities.

Consider first the last term on the RHS of (47), involving the expression Uccc/Ucc. If C and H were
independent in utility, so Ucy = 0 for all C and H, this term would be the only difference between the
stochastic and non-stochastic equations which we are comparing (i.e. the i and [1/dt]EdI equations). In
that case of direct separability in utility between C and H (note that there would still be a connection
between them through | and the budget constraint), if we set o} to zero, so we are in the non-stochastic
case, the difference between the i and the [1/dt]EdI equations would disappear, and if oy is non-zero
but Iy = 0 so that health investment did not respond to changes in H, we would find no difference
between the stochastic and non-stochastic equations even in the presence of uncertainty. It is also the
case that in the stochastic case with I formally non-zero, if Uccc = 0, the presence of uncertainty would
have no effect on the optimal trajectory of I.

The interpretation of the term Uccc has been approached from a number of directions in the literature.
Kendall (1990) interprets the expression -Uccc/Ucc as the coefficient of prudence, a counterpart to the
more familiar coefficient of risk aversion, -Ucc/Uc. The term Uccc will clearly be involved in the way the
coefficient of risk aversion changes as C changes, so Uccc has also been discussed as an element in

13



Decreasing Absolute Risk Aversion. The Uccc term has also been shown to be related to the individual’s
degree of downside risk aversion (see, for example, Liu and Meyer (2012)).

One way to look at the role of U is to consider a utility function which is a function of the random
variable C alone, and use a third order Taylor series expansion to find an expected utility (EU(C))
expression. We do this taking EC, the expected value of C, as our point of expansion. First, we write:

(48) U(C) = U(EC) + U(EC)[C — EC] + % Ucc(EC)[C — EC]* + 1/6 Uccc(EC)[C — ECJ?

Next, since we want to find an expression for EU(C), we apply the expectations operator to both sides of
the Taylor series expansion. Note that because we are expanding at the exact point EC, the U(EC) and
related terms are not stochastic, so the only stochastic elements on the RHS are those involving C
directly. This gives:

(49 EU(C) = U(EC) + Uc(EC)E[C — EC] + % Ucc(EC)E[C — EC]* + 1/6 Uccc(EC)E[C — EC)?

In this expression the term U¢(EC)E[C — EC] will vanish because U(EC) is non-stochastic and E[C-EC] — the
expected value of the deviation from the mean of a value of the random variable C — will equal zero.
This gives:

(50) EU(C) = U(EC) + % Ucc(EC)E[C — EC]? + 1/6 Uccc(EC)E[C — EC]?

In this expression we see that the deviation of the expected utility of C from the utility of the expected
value of C (the Jensen’s Inequality effect, sometimes referred to as the utility premium of uncertainty)
depends on the second derivative of U, multiplied by the variance of C and the third derivative of U
multiplied by E[C — EC]® (note that we are taking the expectation of a cube here, so that fact that [C —
EC)® = [C -EC][C - EC]? does not mean that its expectation is equal to zero even though the expectation
of [C— EC] =0). The term E[C — EC)® is a measure of the degree of skewness of the distribution of the
random variable C. If E[C — EC]® is negative, the distribution of C is skewed to the left — C has a long left,
or down-side, tail — and if the expectation of the cube is positive, the distribution of C is skewed to the
right.

If Ucee = O for all values of C, our individual’s utility is not affected by the presence of skewness in the
distribution of her C. Note that, so long as we maintain the assumption of risk aversion, so that U¢c <0,
the presence of uncertainty will reduce her expected utility relative to the level of utility associated with
her expected level of consumption, and the larger the variance of the distribution of C — loosely, the
greater the degree of uncertainty she faces, the further EU(C) will be below (EC). Thus, in terms of our
discussion of equation (47) above, if she is risk averse but has Uccc = 0, our individual’s utility will be
reduced by the uncertainty but she will not adjust her quantitative consumption decision in response to
it (although in an insurance model she will be prepared to buy insurance against the loss, if she is risk
averse).

The usual assumption in the literature is that Ucec > 0. In terms of equation (50) for EU(C), this means
that our individual’s expected utility will be reduced if the distribution of C is left skewed and increased
if the distribution of C is right skewed. Thus she will generally be prepared to adjust her consumption to
reduce the degree of left skew, but not to reduce the degree of right skew. (Extending the Taylor series
expansion to the third order helps resolve the question of why the same risk-averse individual will be
prepared to buy insurance against a loss and at the same time buy lottery tickets. In the case of
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insurance, she is facing the chance of a large downside shock, meaning a heavily left skewed element in
the distribution of her wealth in any period. This prospect will reduce her expected utility so she will be
willing to pay to avoid it. In the case of the lottery ticket she is contemplating a very right-skewed, albeit
usually low probability, shock to her wealth, independent of any downside shocks that she might wish to
insure against, and she would be willing to pay to acquire that. Thus, since the loss to be insured against
and the possible gain from a winning lottery ticket are independent elements in the overall probability
distribution function for her wealth; an individual with Ucec > 0 would be prepared both to insure and to
buy lottery tickets. The insurance/lottery paradox rests on assuming that only the mean and variance of
wealth matter in the determination of expected utility, and that skewness does not. Note that if we
take the Taylor series expansion out to fourth order, the degree of Kurtosis of the distribution of C, E[C —
EC]*, will enter the expression for expected utility. It has been suggested that this term plays a role in
financial investment portfolio decisions along with the mean, variance and skewness of the returns on
various assets.

Most individuals can safely be assumed to be averse to leftward skewness (i.e. downside risk averse)
and open to rightward skewness in the distribution of things like wealth and health, so it is reasonably
safe simply to assume that Uccc > 0. The cross-third partial terms in (47) are rather more difficult to
interpret. Dardanoni (1988), and Dardanoni and Wagstaff (1990), focus their discussion on measures of
partial risk aversion (i.e. risk aversion in the direction of either one of the arguments of a two-argument
utility function in isolation) and so combine own and cross third partials into terms which determine the
sign of changes in risk aversion in the relevant direction. A discussion of the sign of a term like Ucuy(C,H)
necessarily starts with a discussion of Ucy since, as we noted above, if it is everywhere separable in C
and H, the third cross-partials will always be zero.

The most common assumption (which, for example, Dardanoni and Wagstaff seem to make implicitly,
although its violation would not vitiate their results) is probably that Ucy > 0: the marginal utility of C
increases in H, in the sense that the healthier our individual is the more utility she gets from an
additional unit of consumption even though the consumption commodity in question is not directly
related to her stock of health capital (in this paper we made this assumption in relation to equation (1)
above). Eeckhoudt and Schlesinger (2013), however, approaching the question from the perspective of
uncertainty analysis, suggest that the concepts of risk apportionment and correlation aversion yield a
different signing of Ugy. Consider an individual who is faced with a lottery under which she will face
having to take hits to both her health and her wealth. These concepts mean that, weighing up the
alternatives, she would generally prefer to take a hit to her wealth when she is in good health, and to
take a hit to her health when her wealth is high rather than taking hits to both wealth and health at the
same time. (In the lottery context she would prefer a lottery in which the outcome is that in the next
period she has a fifty percent chance of taking a hit to her health and a fifty percent chance of taking a
hit to her wealth, to a lottery in which in the next period she has a fifty percent chance of taking hits to
both health and wealth and a fifty percent chance of taking hits to neither.) In this literature the
individual is regarded as preferring to apportion the two hits by placing them in different states of
nature or, alternatively, of preferring to combine good with bad, so that only one bad will occur in the
next period rather than there being a chance of both bads occurring.) Eeckhoudt and Schlesinger note
that this pattern of preferences translates to U¢y < 0. Obviously the way we think about her preferences
will depend on what we envision she can spend her wealth on — what C can contain. We have been
defining C as non-health related goods. If we think of a hit to C as being a hit to Y, and recognize that in
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the face of a bad health shock the individual will increase her spending on curative care, which will cut
into her C, it would seem reasonable to assume that she would prefer not to take a hit to health and a
hit to wealth at the same time. This, however, is not at the essence of the signing of the third cross
derivatives, as Eeckhoudt, Rey and Schlesinger (2006) note. Correlation aversion, which implies Ucy < 0,
is a general preference for combining good with bad rather than facing a chance of taking the bad all at
once, with the notion being that higher consumption on non-health related goods will to some degree
compensate for the reduction in health state, and vice versa.

Consider the Marginal Utility of C in the case where the utility function depends on C and H: U¢(C,H).
We assume that Uc > 0 and Ugc < 0. The third partials of the utility function relate to the concavity or
convexity of the marginal utility functions. If Ugec > 0, as we have assumed above, Uc is convex in the C
direction. Reverting to the case of a single argument for a moment, let V(C) = U¢(C). then, taking a
second order Taylor series expansion of V(C) with EC as the point of expansion we have

(51)  V(C) = V(EC) + V(EC)[C = EC] + % Vc(EC)[C — EC]?

And taking expectations on both sides we have
(52)  EV(C) = V(EC) + % Vcc(EC)E[C — EC]?

So whether the presence of uncertainty (a non-zero variance term, E[C — EC]?) raises or lowers EV(C)
relative to V(EC) will depend on whether V. >< 0. If Vc(C) > 0, the presence of uncertainty will, by the
Jensen’s inequality effect with a convex function, pull EV(C) up relative to V(EC). However, since V(C) =
Uc(C), we can re-write (52) as

(53)  EU((C) = UC(EC) + % Uccc(EC) E[C — EC)?

So Vc(C) > 0 translates to Uccc(C) > 0 and our assumptions about U(C) translate into marginal utility
which is positive (Uc > 0), diminishing in C (Ucc < 0) and convex in the C direction (Uccc > 0). Uncertainty
about C pulls the individual’s expected utility from consumption down but pulls her expected marginal
utility up.

For the cross derivatives we are still looking at U¢(C,H), but now looking at the shape of the marginal
utility of C curve in the H direction. We still assume that U¢ > 0, but now the sign of Uy tells us whether
the MU of C curve, U¢(C,H), is upward or downward sloping when we plot it against H, and the sign of
Ucrn(C,H) tells us whether the U curve is convex or concave in the H direction. In terms of the effect on
Uc of uncertainty about H, it is the case that regardless of whether Uy is positive or negative, if Ucyy is
positive (so Uc is convex in the H direction, regardless of whether the slope of U¢ in that direction is
positive or negative) uncertainty about H will pull the marginal utility of C up, and if Ucyy < O, so Uc is
concave in the H direction, uncertainty about H will pull the marginal utility of C down. The case of Ucyy
> 0 is often referred to in the literature as the case of cross-prudence in consumption and the case
where Ucyy < 0 is referred to as the case of cross-imprudence in C. Similarly, Uycc > 0, the case where
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uncertainty about C pulls the marginal utility of H up, is often referred to as cross-prudence in Health
and Uycc < O is referred to as cross-imprudence in health®.

VL. Comparative Dynamics in a Phase Diagram

In equation (47), the prudence term, written out in full, is [Uccc/2PUcc] o’ PI%. We have assumed that
Ucce > 0, and diminishing marginal utility gives us Ucc < 0. Since the remaining terms are all positive, if
we look at this term alone (or equivalently, assume for the moment that Uy = 0), [1/dt]EdI contains, in
addition to i, a negative term. In particular this means that for values of | and H for which i = 0, [1/dt]EdI
will be negative. In the phase diagram for the non-stochastic case, setting | = 0 lets us find the
stationary locus for . In the stochastic case the set of (I,H) values for which i = 0 will be associated with
a negative expected instantaneous drift in I. If we want [1/dt]EdI = O, given that the last term in (47) is
negative, we must make the first term positive, i.e. we must be in a region on the (I,H) phase diagram in
Figure 1 which is associated with | > 0. The phase arrows for the non-stochastic case indicate that | will
be increasing at points above the non-stochastic stationary locus, so we can say in general that the
points for which the expected drift in | in the stochastic case will equal zero will lie above the stationary
locus for | from the non-stochastic case. Thus we can draw a stationary-in-expectation locus for | in the
stochastic case lying above the non-stochastic stationary locus for I. Note that the stationary locus for H
will not be affected because it is a simple mathematical relation — given H and §, what value would |
have to take on to make H = 0”. Behavioural factors are in the stationary locus for I. We have illustrated
this case in Figure 2.

[FIGURE 2 ABOUT HERE]

In Figure 2, the trajectory labelled A was the optimal lifetime trajectory from Figure 1, the non-
stochastic case, and the trajectory labelled B is its counterpart for the stochastic problem.

With regards to the shape of the new trajectory, since the last term in (47) is negative (and continuing to
assume that Uqy = 0), we can also say that at any given (I,H) pair the expected drift in | in the stochastic
case will be less than the change in | in the non-stochastic case. Thus | will, in expectation, rise more
slowly and fall more quickly, and there will be a region on the diagram in which in the non-stochastic
case | was rising but in the stochastic case | will be tending to drift down. With enough of an upward
shift in the stationary locus in expectation, the segment of the original, non-stochastic trajectory along
which | was rising will now be in the region of the phase diagram in which | is tending to drift down. This
raises the question of how the individual’s choice of initial value of | will be affected by the introduction
of Weiner-type uncertainty. We note that we have not changed the planning horizon of the problem,
and that the terminal transversality conditions for the stochastic problem will be the same, albeit in
expectation, as those for the non-stochastic problem, meaning that the individual will not want to reach
the horizontal axis significantly sooner in the stochastic case®.  Thus, assuming that in the stochastic

® On the inspiration for the terminology see Eeckhoudt and Schlessinger (2013) and L. Eeckhoudt, B. Rey and H.
Schlesinger (2006), and for an application of the concepts in health economics see M. Brianti, M. Magnani and M.
Menegatti (2017).

"In addition, looking at equations (2) and (12) above we see that [EdH]/dt = 0 in (12) when H =0in (2).
® On terminal transversality conditions in stochastic control problems see Malliaris and Brock (1982).
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case the individual is born with the same initial H as she was in the non-stochastic case, we expect the
starting point for her optimal lifetime trajectory to shift up. From our interpretation of (47) we also
expect | to be rising more slowly in expectation, even though it is above the relevant stationary locus, so
we expect the expectational trajectory to be flatter in the region where it is positively sloped, then to
fall more steeply in the region where it is negatively sloped. Thus assuming that our individual starts
with the same level of H and has the same planning horizon in both cases, we expect Wiener-type
uncertainty about the effect of | over time to translate into a tendency to front-load I, then at some
point to let it start falling faster than in the non-stochastic case.

We still have the question of the effect of the second term in (47) — the term involving cross-prudence
effects — on the individual’s lifetime trajectory. Here again, Ucc will be negative. Ucyy will be positive if
our individual’s marginal utility of C function is convex in H, so that uncertainty about H tends to cause
the MU of C to drift up (in the Weiner process intertemporal case), regardless of the sign of Ucy. On the
other hand, if we start from the assumption that Ugy is positive, so that being in better health increases
the marginal utility which our individual derives from another unit of C, and if we assume that the effect
of increases in H on the MU of C diminishes with increasing H, then Ucyy will be negative. Focusing on
this first part of the second element on the RHS of (47), we have [UCHH/ZPUCC]GHZ, which will be negative
and hence reinforce the effect of the final term if Ucyy > 0.

Turning to the second part of the second element on the RHS of (47), we have [—2PUHCCIH/2PUCC]0H2.
Here again we must consider the convexity or concavity of a marginal utility term — this time Uy, the
convexity or concavity of the marginal utility of H with respect to C. Here, however, we have an
additional term |y, which reflects how increases in our individual’s level of H affect her propensity to
invest in H. It seems reasonable to assume that, the healthier our individual is, the lower the marginal
benefit of additional units of H, especially if we assume there exists at any point in time some upper
limit to H — some notion of perfect health. Thus we can make an argument for Iy < 0. Then the sign of
this second element will depend on the sign of the cross-prudence term. If the MU of H is convex in C,
and the MU of C is convex in the H direction, then the second element on the RHS of (47) will reinforce
the third element in pulling the expectational stationary locus for | up and shifting the expectational
trajectory for | up in the earlier part of our individual’s lifetime plan.

VII. Conclusion

In this paper we have extended the analysis of investment in health under uncertainty to the case of
cumulative uncertainty about the effects of health investments or, perhaps, health behaviours, which
the individual engages in on a continuous basis. This would include cases relating to diet, exercise, or
other health-related activities or habits as distinct from the treatment (whether preventive or curative)
activities which have been the focus of most of the previous literature. We analyze the individual’s
problem using techniques of stochastic control theory in the case where uncertainty can be represented
by a Wiener process, in this case, in the equation of motion for Health Capital.

As we would expect from the uncertainty literature broadly defined, our results depend on third
derivatives of utility functions — on prudence and cross-prudence or cross-imprudence terms. While
much of the literature interprets third derivatives directly — in terms of the curvature of the utility
function and in particular in relation to Decreasing Absolute Risk Aversion (DARA) - we also note that the
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third derivative of a utility function can be interpreted as the second derivative of a marginal utility
function. This is in some ways a more intuitive way of looking at the elements added to the equations
which determine the choice of the level of health investment, since it is marginal, rather than total,
utility which appears in the first order condition which is solved to determine the optimal level of health
investment. The use of a continuous time stochastic control framework is also useful in terms of
interpretation: in a static uncertainty model the effect of uncertainty is discussed in terms of whether
the EU¢(C) is greater or smaller than U¢(EC), for example, in the case of the continuing processes invoked
when we introduce Wiener processes into stochastic control problems the consequence of the
continuous random-walk characteristic of the Wiener process is to cause a marginal utility term to
continuously drift up or down as time passes, depending on the concavity or convexity of U¢(C).

We note that the signing of these convexity/concavity terms is not necessarily easy — the signs which we
might settle on instinctively for terms like Ucy(C,H), for example — probably complementarity in utility,
making the sign positive — is not necessarily the same sign we would settle on if we approach the
guestion via the risk apportionment approach, as Eeckhoudt and Schlessinger (2013) have shown, and
the difference can significantly affect individuals’ long term health investment decisions. One advantage
of the stochastic control approach which we have adopted here is that it allows for illustration of the
effect of the introduction of uncertainty not just by setting out the equations representing the necessary
conditions for the stochastic and deterministic cases and noting their differences; it also lets us discuss,
at least in qualitative terms, using a phase diagram, how those differences can be expected to play out
in individuals’ optimal lifetime health investment trajectories.

In any given population there is likely to exist a mix of people who have Ucy > 0 and those who have Ucy
< 0, as well as mixtures of different degrees of convexity or concavity of the Uc function with respect to
H. This can be expected to be a complicating factor, which needs at least to be considered, even if it
cannot be completely controlled for, in empirical implementation of Grossman’s model of investment in
health capital.
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Figures

Figure 1 Phase Diagram for the Deterministic Case

22



[EdI]/dt=0

Figure 2 Phase Diagrams comparing Deterministic and Stochastic Case for Weiner Process
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