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1 Introduction

While some may consider that income inequalities are the result of di↵erential e↵ort and

skill, there are domains in which inequality is perceived (by many) as a social injustice;

health inequality is one of them (Tobin, 1970). This is why measuring socioeconomic

health inequality is important from a social perspective and is critical when evaluating the

impact of health policy reforms on the distribution of population’s health. There is a large

body of literature on the measurement of socioeconomic health inequalities most of which

has focused on the properties and issues arising from the use of these indices as well as

the ethical principles they should obey. Some argue that the analyst should be concerned

with inequalities that occur in the lower part of the distribution of socioeconomic status

(Wagsta↵, 2002) and others maintain that the analyst should be more concerned with

deviations occurring away from the median of the socioeconomic status (Erreygers, Clarke

and Van Ourti, 2012). While the desirable ethical principles for these measures may still be

on the debate table, this paper adopts a unified approach by including both possibilities.

As such, the overarching objective of this paper is to provide the analyst with the necessary

tools that allow for a robust ordering of joint distributions of health and income including

the associated statistical inference compatible with both ethical principles.

This paper contributes to the literature on socioeconomic health inequality measure-

ment and inference in three distinct but complementary ways. First, it contributes to the

literature that formalizes the ethical principles underlying socioeconomic health inequality

indices by o↵ering a formalization of Erreygers, Clarke and Van Ourti’s (2012) view of

what is considered a desirable property for these indices. In doing so, it provides a for-

mal presentation of the ethical principles associated with indices that pass the upside-down

test and coin these principles as the symmetry around the median principle (at the second

order) and the pro-extreme rank principles (at higher orders). Second, it contributes to
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the socioeconomic health inequality measurement literature by introducing new graphical

tools associated with these principles, a new class of range curves, and by deriving the

associated dominance conditions. These range curves have a role analogous to the one

played by health concentration curves where the analyst adopts pro-poor ethical principles.

Developing new dominance conditions (for these new range curves) will help the analyst

identify robust orderings when operating under the assumption that the symmetry around

the median principle and pro-extreme rank principles are desirable. Finally, it contributes

to the literature on hypothesis testing for dominance conditions by providing estimators of

health concentration curves and health range curves as well as consistent testing methods

for dominance compatible with both ethical principles.

The remaining of this paper is organized as follows. In section 2, we provide a brief

review of the literature on the measures of socioeconomic health inequality, the basic ethical

principles on which they are founded as well as the associated literature on inference. In

section 3, we describe the measurement framework in which we are operating and discuss the

associated basic ethical principles. In section 4, we examine higher order ethical principles

for pro-poor and pro-extreme rank ethical principles then define the sets o↵ indices obeying

these principles. In section 5, we present the health concentration curve, the s-health

concentration curves, the health range curve, the s-health range curves and their respective

generalized versions. We also develop dominance conditions to identify robust orderings for

the sets of indices developed in section 4. In section 6, we present the natural estimators for

the curves presented in section 5 and develop the statistical inference to test for dominance.

Finally, in section 7, we provide an empirical illustration using information on cigarette

consumption and overweightedness from National Health Interview Survey (NHIS) in 1997

and 2014.
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2 Literature Review

This paper is related to two main strains in the literature, the literature on the measurement

of socioeconomic health inequality and the literature on hypothesis testing for dominance

in the context of inequality.

The most traditional measure of socioeconomic health inequality is the concentration

index proposed byWagsta↵, Paci and van Doorslaer (1991). It has a mathematical structure

that assumes a very specific form and level of aversion to socioeconomic health inequality.

Wagsta↵ (2002) argues that it may be desirable to consider other levels of inequality aversion

than the one that is implicitly imposed in the standard concentration index. He suggests a

parametric class of indices: the extended health concentration indices. This proposed class

of indices incorporates a parameter that allows for a wider range of levels for aversion to

socioeconomic health inequality than the one embodied in the principle of income related

health transfers.

Erreygers, Clarke and Van Ourti (2012) highlight that the use of extended health con-

centration indices imposes a specific ethical view on what constitutes an increase in aver-

sion to socioeconomic health inequality; they label it pro-poor transfer sensitivity ethical

position. In the context of pro-poor transfer sensitivity, increasing aversion to socioeco-

nomic health inequality is achieved by increasing the weight of transfers occurring at lower

ranks of socioeconomic distribution. This widely used ethical position is based on a con-

cept developed in the (unidimensional) income inequality literature and is adapted to fit

the (bi-dimensional) socioeconomic health inequality context. Erreygers, Clarke and Van

Ourti (2012) consider that pro-poor transfer sensitivity is debatable as the analyst may

want to consider other ethical principles. They also argue that this ethical principle is

not appropriate in a bi-dimensional context such as socioeconomic health inequality and

propose new ethical principles that we will label in this paper as the symmetry around the
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median principle and pro-extreme rank transfer sensitivity principles. Based on this prin-

ciple, an increase in socioeconomic health inequality is achieved by increasing the weights

on transfers occurring further away from the median of socioeconomic statuses. Makdissi

and Yazbeck (2014) formalize the definition of pro-poor transfer sensitivity principles and

introduce higher orders of health concentration curves, the s-health concentration curves.

They show how these curves can be used to identify robust orderings of health distributions

for indices obeying pro-poor transfer sensitivity principles. From this perspective, this pa-

per is related to Makdissi and Yazbeck (2014) yet is di↵erent from it in two distinct ways.

First, it formalizes the pro-extreme rank principles introduced by Erreygers, Clarke and

Van Ourti (2012) and derives the corresponding higher order ethical principles. Second,

it proposes new graphical tools associated with these principles; the health range curve

and the s-health range curves. These curves will be used to derive necessary and su�cient

conditions for robust orderings of joint distributions of income and health.

Compared to the literature on socioeconomic health inequality measures, the literature

on the statistical inference for these measures is scant as most it focused on income in-

equality measures (Kakwani, Wagsta↵ and Van Doorslaer (1997) is an exception). As for

inference regarding various forms of stochastic dominance, it followed the same pattern as

statistical inference on inequality measures. It focused on dominance tests in the context of

income inequality literature namely in Anderson (1996), Davidson and Duclos (2000), Bar-

rett and Donald (2003), Linton, Maasoumi and Whang (2005), Linton, Song and Whang

(2010), Barrett, Donald and Batcharaya (2014) as well as Schechtman, Shelef, Yitzhaki and

Zitifkis (2008). While Anderson (1996) test is based on the assumption that observations

are drawn from two independent distributions, Davidson and Duclos’s asymptotic approach

to inference allows for observations to be drawn from a joint distribution. However, as in

Anderson (1996), Davidson and Duclos’s test uses a fixed number of arbitrary grid points.
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The use of fixed number of arbitrary grid points is not a desirable feature of the test as the

decision of the test will be contingent to the choice of the grid points and thus inconsistent

(Barrett and Donald, 2003). To overcome this issue, Barrett and Donald (2003) propose

a consistent Kolmogorov-Smirnov (KS) type test. Their approach tests dominance over

all the points of the support, however, their test (as Anderson’s) applies in cases where

samples are drawn from independent distributions of income. Thus, Barrett and Donald’s

test does not allow for dominance for bivariate measures of inequality (i.e., for marginal

conditional dominance). Schechtman et al. (2008) address this issue and propose a consis-

tent statistical procedure in the context of a bivariate measure of inequality; the absolute

concentration curve (a.k.a the generalized concentration curves in the health literature) in

the context of portfolio choice in finance.

This paper contributes to this literature by proposing a consistent statistical test akin

to the test Schechtman et al. (2008) and Barrett and Donald (2003) for the new dominance

conditions introduced in this paper. Given that the dominance conditions we develop are for

bivariate distributions, this paper is more akin to the work by Schechtman et al. (2008) than

to the work of Barrett Donald (2003) and Linton et al. (2005). Although the hypothesis

we are testing is in some cases mathematically analogous to the one tested in Schechtman

et al. (2008), it remains di↵erent for three reasons. First, the framework and ethical

principles are di↵erent. As a result, many of the welfare foundations and mathematical

forms involved are di↵erent. Second, all estimators, dominance conditions and inference for

indices obeying pro-extreme rank ethical principles are new. Finally, all the higher order

dominance conditions for indices obeying higher order pro-poor ethical principles have no

available statistical inference in the literature.
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3 Measurement framework

The purpose of this section is to set the measurement framework and elaborate on the un-

derlying ethical principles underlying health achievement and relative socioeconomic health

inequality indices. These indices are functionals of the joint distribution of health, H and

income, Y. In this paper, the term “income” refers to a measure of socioeconomic status.

Let H and Y be 2 random variables that are absolutely continuous with support on the

positive half real line with densities fH and fY respectively, with a joint density fY,H and

with a cumulative distribution of income, FY (y).1 We are interested in measuring health

achievement and relative socioeconomic health inequality in a rank-dependent framework

where ranks are individual’s position in the distribution of socioeconomic statuses. In this

context, a health achievement index is a weighted average that can be written as

A (h) =

Z 1

0
!(p)h(p)dp, (1)

where !(p) represents the social weight of an individual at rank p 2 [0, 1] in the income

distribution and h(p) is the conditional expectation of health, H, with respect to Y equal

to its p-quantile:

h(p) = E[H|Y = F�1
Y (p)]. (2)

In general, any relative index of socioeconomic health inequality can be interpreted

as the ratio between the cost in health achievement associated with socioeconomic health

inequalities and the average health status. This is why it is possible to write rank-dependent

relative socioeconomic health inequality indices as a function of achievement indices. Thus,

a relative index of socioeconomic health inequality can be directly be computed by taking

the di↵erence between the average health status, µh, and the health achievement index

1In this paper, we assume that this health measure is a ratio-scale variable. For ease of exposition we
also assume that densities exist.
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A(h) divided by average health status:

I(h) = 1� A(h)

µh
(3)

where, µh =
R 1
0 h(p)dp is the expectation of H. Formally, an index of relative socioeconomic

health inequality can be rewritten as

I (h) =

Z 1

0
⌫(p)

h(p)

µh
dp, (4)

where the weight function ⌫(p) = 1 � !(p). The mathematical properties of the social

weight function !(p) and implicitly ⌫(p) are associated with indices’ ethical principles. The

following section will elaborate on two di↵erent ethical principles underlying socioeconomic

health inequality and health achievement measures; the principle of income-related health

transfer and the principle of symmetry around the median.

3.1 Principle of income-related health transfer

The following assumptions on the behaviour of !(i)(p) = @i!(p)
@pi

8 i 2 {1, 2, . . . , s� 1}, and

⌫i(p) will guarantee that the indices will have the properties that are compatible with the

ethical principle deemed desirable for rank-dependent measures of health achievement and

socioeconomic health inequality:

A.1 !(1)(p)  0

A.1’ ⌫(1)(p) > 0 (i.e. !(1)(p) < 0),

A.2
R 1
0 !(p)dp = 1,

A(h) as defined in equation (1) is considered to be a rank-dependent measure of health

achievement when the weight function, !(p) satisfies assumptions A.1. and A.2. Similarly,

I(h) as defined in equation (4) is considered to be a rank-dependent measure of socioe-

conomic health inequality when the weight function ⌫(p) satisfies assumptions A.1’ and
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A.2. The role of assumption A.2 is to guarantee that the weight function ⌫(p) sums to

zero (i.e.,
R 1
0 ⌫(p)dp = 0) and thus that inequality indices have two fundamental desirable

properties.2 The first desired property requires that in the absence of health inequality

(i.e., when everybody has the same health status, h̃), the inequality index I(h) value be

equal to zero. The second requires that I(h) remains unchanged if everyone’s health in-

creases in the same proportion. The role of assumptions A.1 and A.1’ is embedded in

Bleichrodt and van Doorslaer (2006) principle of income-related health transfer. According

to this principle, the contribution of an individual’s health status to total health achieve-

ment (socioeconomic health inequality) is non-increasing (increasing) with socioeconomic

status. This means that ceteris paribus, if the rich (poor) are relatively healthier, then the

health achievement will be lower (higher), and the socioeconomic health inequality will be

higher (lower). As illustrated in Figure 1, this principle implies that performing a mean

preserving health transfer �h from an individual at socioeconomic rank p2 to a person at

a lower socioeconomic rank p1, increases (decreases) health achievement (socioeconomic

health inequality).

Figure 1: Second order ethical principle

Here I test the new software:

p
p1 p2

� �h

� �h

p
-�h

p1 p2 p3 p4

p
� - - �

p1 p2 p3 p4 p5 p6 p7 p8

�h �h �h �h

1

It is important to highlight the interpretation of the slight di↵erence between assump-

tions A.1 and A.1’. Assumption A.1 is less restrictive since it allows for !(p) = 1 for all

p whereas assumption A.1’ imposes a strict inequality. When !(1)(p) = 0 for all p is com-

bined with A.2, there is only one possible weight function, !(p) = 1, the resulting health

achievement is the unweighted average health status µh.

Now that we have elaborated on the underlying ethical principle, we will use these

2Note that ⌫(p) = 1� !(p).
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assumptions to define the sets of all rank dependant health achievement and socioeconomic

health inequality that we will be considering in this paper. Let us denote by ⌦2 the set of

all rank-dependent health achievement indices and obeying assumptions A.1 and A.2. We

can define this set as follows:

⌦2 :=

8
<

:A(h)

������

!(p) is continuous and di↵erentiable almost

everywhere over [0, 1] ,
R 1
0 !(p)dp = 1,

!(1) = 0,!(1) (p)  0, 8p 2 [0, 1]

9
=

; .

Let us denote by ⇤2 the set of all rank-dependent socioeconomic health inequality indices

obeying assumptions A.1’ and A.2. We can define this set as follows:

⇤2 :=

8
<

:I(h)

������

⌫(p) is continuous and di↵erentiable almost

everywhere over [0, 1] ,
R 1
0 ⌫(p)dp = 0,

⌫(1) = 1, ⌫(1) (p) > 0, 8p 2 [0, 1]

9
=

; .

3.2 Principle of symmetry around the median principle

According to Erreygers, Clarke and Van Ourti (2012), an index is considered a good measure

of socioeconomic health inequality if it passes the upside-down test in addition to obeying

the principle of income related health transfer. Let g(p) = h(1 � p), the upside-down

test consists in verifying if I (g(p)) is always positive (negative) when I (h(p)) is negative

(positive). Erreygers, Clarke and Van Ourti (2012) show that an index passes this test only

if its weight functions ⌫(p) is symmetric around the median of socioeconomic statuses (i.e.,

around p = 0.5). This leads to the following additional assumptions on the behaviour of

the social weight function:

A.3 ⌫(1� p) = �⌫(p),

A3’ !(1� p) = 2� !(p).

Assumption A.3 also implies that ⌫(0.5) = 0. Let ⇤2
⇢ ⇢ ⇤2 be the subsets of rank-dependent

socioeconomic health inequality indices that pass the upside-down test. It is possible to

9



define these subsets as follows:

⇤2
⇢ :=

�
I(h) 2 ⇤2 | ⌫(1� p) = �⌫(p) 8p 2 [0, 1]

 
.

As explained earlier, socioeconomic health inequality indices can always be expressed as

a function of the achievement indices. This is why it is also possible to associate health

achievement indices with these subsets of rank-dependent socioeconomic health inequality

indices. Let ⌦2
⇢ ⇢ ⌦2 be the subset of rank-dependent health achievement indices underlying

socioeconomic health inequality indices that pass the upside-down test. Formally,

⌦2
⇢ :=

�
AA(h) 2 ⌦2 | !(1� p) = 2� !(p) 8p 2 [0, 1]

 
.

3.3 Examples of parametric class of indices

As pointed by Erreygers, Clarke and Van Ourti (2012), equation (4) is reminiscent of

Mehran (1976) class of rank-dependent income inequality indices with a slight di↵erence;

individual ranks (socioeconomic status) are not determined by the rank of the variable of

interest (health). The weight function !(p) may take di↵erent functional forms that depend

on socioeconomic rank p. Each subset of the class of achievement or inequality indices will

depend on the specific form imposed on its weight function. For instance, if the analyst’s

ethical position is compatible with sensitivity to poverty, then a weight function !(p) = ⇢(1�

p)⇢�1, where ⇢ > 1 the socioeconomic health inequality aversion parameter, is appropriate.

In this case, equation (1) describes Wagsta↵’s (2002) class of health achievement indices,

a subset of ⌦2. For the same specific parametric form of the weight function, equation

(4) describes Wagsta↵’s (2002) class of extended health concentration indices a subset of

⇤2.3 One may argue that an index is considered a good measure if it passes upside-down

test (see, Erreygers, Clarke and van Ourti, 2012). In this case, the analyst values transfers

occurring farther away from the median socioeconomic rank. As a result, sensitivity to

3Note that for the standard health concentration index ⇢ = 2.
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extremities may be a more appropriate ethical position than sensitivity to poverty. A

compatible weight function would be !(p) = �2��2
h�
p� 1

2

�2i (��2)

2

�
p� 1

2

�
, where � > 1

is the socioeconomic health inequality aversion parameter. For this specific parametric

weight function, equation (4) describes Erreygers, Clarke and Van Ourti’s (2012) class of

symmetric health socioeconomic inequality indices.4 It is important to underline that the

standard health concentration index (i.e., when ⇢ = 2) passes the upside-down test since

1� ⇢(1� p)⇢�1 = 2p� 1 is by construction symmetric around the median. However, for all

values of ⇢ 6= 2, the extended health concentration and health achievement indices do not

pass the upside-down test. Wagsta↵ (2002) class of extended health concentration index

and Erreygers, Clarke and Van Ourti’s (2012) class of symmetric health socioeconomic

inequality indices are both subsets of ⇤2. While Wagsta↵ (2002) and Erreygers, Clarke

and Van Ourti (2012) are the most widely used indices in the health economics literature,

they are not the only possible health achievement and socioeconomic health inequality

indices. Other rank-dependent health achievement and socioeconomic health inequality

indices based on similar ethical principles may be constructed.

4 Higher order aversion to socioeconomic health inequality

There are two distinct views in the literature on what constitutes a desirable higher order

principle of aversion to socioeconomic health inequality. Wagsta↵ (2002) adopts a pro-poor

health transfer sensitivity approach where health transfers occurring in the lower part of

the distribution of socioeconomic ranks are deemed to be more desirable. Erreygers, Clarke

and Van Ourti (2012) argue in favour of a pro-extreme rank transfer sensitivity approach

where transfers occurring farther away from the median of socioeconomic ranks are valued

more than transfers occurring closer to the median. In what follows we elaborate on the

4Note that when � = 2, the symmetric health socioeconomic inequality index collapses to the health
concentration index.
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interpretation of each of these views and their implications on the behaviour of the social

weight functions. We then define the sets of indices obeying these higher order ethical

principles.

4.1 Generalized pro-poor health transfer sensitivity principles

The principle of transfer sensitivity was proposed by Kolm (1976) in the context of the

income inequality literature. Mehran (1976) adapted this principle to a rank-dependent in-

come inequality measurement framework. Mehran’s rank-dependent version of the transfer

sensitivity principle stipulates that a progressive transfer � from an individual at socioe-

conomic rank p2 to another one at rank p1 (where p1 < p2) more than compensates for

a regressive transfer of the same amount � from an individual at rank p3 to another at

rank p4 (where p4 > p3 > p2 > p1 and p4 � p3 = p2 � p1) provided there is no re-ranking

following the transfers. One natural context in which one can extend this principle is the

measurement of socioeconomic health inequality (as in Wagsta↵, 2002).

Wagsta↵’s (2002) class of indices (with ⇢ > 2) and all rank-dependent health achieve-

ment (socioeconomic health inequality) indices obeying assumptions A.1 (or A.1’) and A.2,

obey the pro-poor health transfer sensitivity principle if !(2)(p) � 0 or ⌫(2)(p)  0 for all

p 2 [0, 1]. This ethical principle stipulates that health achievement (socioeconomic health

inequality) increases (decreases) when performing favourable composite mean preserving

transfers. As illustrated in Figure 2, these transfers are such that a beneficial transfer of

health �h from an individual at rank p2 to an individual at rank p1 and a reverse transfer

of health �h from an individual at rank p3 to an individual at rank p4 increases (decreases)

health achievement (socioeconomic health inequality).

Figure 2: Third order pro-poor transfer sensitivity principle

Here I test the new software:

p
p1 p2

� �h

� �h

p
-�h

p1 p2 p3 p4

p
� - - �

p1 p2 p3 p4 p5 p6 p7 p8

�h �h �h �h

1
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Higher-order pro-poor transfer sensitivity can be interpreted easily following Makdissi

and Yazbeck (2014).5 To understand how higher order transfer sensitivity operates, we need

to revisit the second order principle (i.e., the transfer in Figure 1) and relate it to transfers

occurring in Figure 2. The transfer in Figure 1 can be viewed as a favourable increase of �h

for individual at rank p1 combined with an unfavourable decrease of �h for the individual

at rank p2. The progressive transfer is then viewed as a combination of an improvement

at rank p1 and a deterioration at rank p2. If we turn to Figure 2, the composite transfer

can be decomposed as a favourable transfer between the individual at rank p2 and the one

at rank p1 and an unfavourable transfer between the individual at rank p3 and the one

at rank p4. Similarly to the third order pro-poor transfer sensitivity principal, Figure 3

illustrates a fourth-order with two pairs of transfers. A favourable combination of transfers

occurring at lower socioeconomic ranks (between p2 and p1 and between p3 and p4) and

an unfavourable one at higher socioeconomic statuses (between p5 and p6 and between p8

and p7). All rank-dependent health achievement (socioeconomic health inequality) indices

obeying A.1 (or A.1’) and A.2 obey this fourth order pro-poor transfer sensitivity principle

if !(2) � 0 (or ⌫(2)(p)  0) and !(3)  0 (or ⌫(3)(p) � 0).

Figure 3: Fourth order pro-poor ethical principle

Here I test the new software:

p
p1 p2

� �h

� �h

p
-�h

p1 p2 p3 p4

p
� - - �

p1 p2 p3 p4 p5 p6 p7 p8

�h �h �h �h

1

The generalized pro-poor transfer principle expands in a similar manner as the third

and fourth order principles. In general, an index obeying A.1 (or A.1.’) and A.2 obeys

the sth-order pro-poor transfer sensitivity if (�1)i!(i)(p) � 0 or (�1)i+1⌫(i)(p) � 0 for

all i 2 {1, 2, . . . , s � 1}. More formally, the sets of indices of order s, ⌦s
⇡ and ⇤s

⇡ are the

5The authors adapt Fishburn and Willig (1984) generalized transfer sensitivity principles to the context
of socioeconomic health inequality
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sets of all rank-dependent indices obeying the principle of income-related health transfer

and obeying all pro-poor transfer sensitivity principles of order i 2 {3, 4, . . . , s}. They are

defined as follows:

⌦s
⇡ :=

8
<

:A(h) 2 ⌦2

������

!(p) is continuous and (s� 1)-time di↵erentiable almost
everywhere over [0, 1] ,!(i)(1) = 0, (�1)i !(i) (p) � 0, 8p 2 [0, 1],

8i = 1, 2, . . . , s� 1

9
=

; ,

⇤s
⇡ :=

8
<

:I(h) 2 ⇤2

������

⌫(p) is continuous and (s� 1)-time di↵erentiable almost
everywhere over [0, 1] , ⌫(i)(1) = 0, (�1)i+1 ⌫(i) (p) � 0, 8p 2 [0, 1],

8i = 1, 2, . . . , s� 1

9
=

; .

Note that increasing s means imposing more ethical structure on indices. This in turns

implies that ⌦s
⇡ ⇢ ⌦s�1

⇡ ⇢ · · · ⇢ ⌦3
⇡ ⇢ ⌦2, and ⇤s

⇡ ⇢ ⇤s�1
⇡ ⇢ · · · ⇢ ⇤3

⇡ ⇢ ⇤2.

4.2 Generalized pro-extreme rank transfer sensitivity principles

Erreygers, Clarke and Van Ourti (2012) suggest that pro-poor transfer sensitivity is a

debatable ethical principle when measuring socioeconomic health inequality. They argue

that this principle is developed for a unidimensional (income) inequality context and cannot

be readily applied to a bi-dimensional context (socioeconomic health inequality) where

the aim is to measure the degree of association between health status and socioeconomic

rank. More specifically, in the context of pro-poor transfer sensitivity ethical principle, a

negative (positive) value of the index indicates that socioeconomic health inequalities are

pro-poor (pro-rich) but this is regardless of the magnitude of the distance to the median

socioeconomic rank. To account for this possibility, Erreygers, Clarke and Van Ourti (2012)

introduce a symmetric class of indices without formalizing the associated ethical principles.

This is why, we need to define a di↵erent transfer-sensitivity principles that are compatible

with the upside-down test. Given that a class of indices that passes the upside-down test

is more sensitive to transfers occurring farther away from the median of socioeconomic

statuses (i.e., for cases when � > 2), we label the associated ethical principle as the pro-

extreme rank transfer sensitivity principle. We also provide a formal presentation of the
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pro-extreme rank transfer sensitivity principles.

Figure 4 illustrates a 3rd order pro-extreme rank favourable combination of transfers.

An index obeying 3rd order pro-extreme rank transfer sensitivity reacts favourably to a

combination of favourable transfers occurring farther away from the median (p2 to p1 or

p6 to p5) and an unfavourable one occurring closer to the median (p3 to p4). Order s

pro-extreme rank transfer sensitivity principles impose an increasing weight to transfers

occurring further away from the median of socioeconomic statuses as s increases. They

are defined recursively by combining 2 types of transfer of order s � 1, a favourable one

occurring farther from the median and an unfavourable one occurring closer to the median

of socioeconomic statuses.

Figure 4: Third order pro-extreme rank transfer sensitivity
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In general, a rank-dependent socioeconomic health inequality (health achievement) in-

dex obeying A.1’ (or A.1), A.2 and A.3 (or A.3’) obeys the sth-order pro-extreme rank

transfer sensitivity if (�1)i+1⌫(i)(p) � 0 ((�1)i!(i) � 0) for p 2 [0, 0.5] and for all i 2

{1, 2, . . . , s� 1}. More formally, the sets of indices of order s, ⇤s
⇢ and ⌦s

⇢ are the set of all

rank-dependent indices obeying the principle of income related health transfer and obeying

all pro-extreme rank transfer sensitivity principles of order i 2 {3, 4, . . . , s} are formally

defined as follows:

⇤s
⇢ :=

8
<

:I(h) 2 ⇤2
⇢

������

⌫(p)is continuous and (s� 1)-time di↵erentiable almost
everywhere over [0, 1] , ⌫(i)(0.5) = 0, (�1)i+1 ⌫(i) (p) � 0,

8p 2 [0, 0.5], 8i = 1, 2, . . . , s� 1

9
=

; ,

⌦s
⇢ :=

8
<

:A(h) 2 ⌦2
⇢

������

!(p)is continuous and (s� 1)-time di↵erentiable almost
everywhere over [0, 1] ,!(i)(0.5) = 0, (�1)i !(i) (p) � 0,

8p 2 [0, 0.5], 8i = 1, 2, . . . , s� 1

9
=

; .
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Once again, increasing s means imposing more ethical structure on indices. This implies

that, ⇤s
⇢ ⇢ ⇤s�1

⇢ ⇢ · · · ⇢ ⇤3
⇢ ⇢ ⇤2

⇢ ⇢ ⇤2 and ⌦s
⇢ ⇢ ⌦s�1

⇢ ⇢ · · · ⇢ ⌦3
⇢ ⇢ ⌦2

⇢ ⇢ ⌦2. In

addition, because the higher order ethical principles are di↵erent, ⇤s
⇢ \ ⇤s

⇡ = ⌦s
⇢ \ ⌦s

⇡ = ;

for s 2 {3, 4, . . . }.

In this section, we have discussed the higher order ethical principles associated with

the principle of income-related health transfer (i.e., aversion to socioeconomic health in-

equality). In doing so, we have presented two di↵erent higher order ethical principles: the

generalized pro-poor health transfer sensitivity principle and the generalized pro-extreme

rank transfer sensitivity principle. Since those two normative views co-exist in the litera-

ture, we will propose two tests that identify robust rankings, one for each of these views.

5 Identifying robust orderings of health distributions

In the previous section, we have discussed ethical principles that an analyst may impose on

health achievement and socioeconomic health inequality indices. Whenever an analyst uses

these indices to perform a comparison between two distributions, one important question

surfaces: is the comparison obtained valid for wide spectra of indices obeying the same

set of ethical principles? More specifically, is the comparison contingent to the particular

mathematical expression of the index? To answer this question, one needs an approach that

allows for comparisons that are robust over broad spectra of indices; this is why a dominance

approach is necessary. In this section, we will first present some dominance tests developed

in the Makdissi and Yazbeck (2014). These tests are based on the standard health concen-

tration curves (Wagsta↵, Paci and Van Doorslaer, 1991), generalized health concentration

curves, s-health concentration curves and generalized s-health concentration curves. The

health concentration curve may be used to identify orderings of distributions that are robust

for all rank-dependent relative socioeconomic health inequality indices. Also, generalized
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health concentration curves may be used to identify robust orderings of health achievement

indices. To identify robust orderings for subsets of relative socioeconomic health inequality

and health achievement indices obeying pro-poor transfer sensitivity principles, the analyst

can rely on s-health concentration curves and generalized s-health concentration curves

respectively. Also, in this section, we propose new tests for the identification of robust

orderings of distributions for indices obeying pro-extreme rank transfer sensitivity ethical

principles. In doing so, we introduce new graphical tools: s-health range and generalized

s-health range concentration curves. These curves are akin to the s-health concentration

curves and generalized s-health concentration curves but are di↵erent as they are designed

to obey the symmetry around the median principle and pro-extreme rank ethical principles.

5.1 Socioeconomic health inequality orderings

Before providing more details about these tests, it is important to provide some background

on health concentration curves. Wagsta↵, Paci and Van Doorslaer (1991) introduced the

health concentration curve in the health economics literature. This curve plots the cumu-

lative proportion of total health in the population against the cumulative proportion of

individuals ranked by socioeconomic statuses. Formally, the health concentration curve,

C(p), is defined on the support [0, 1] as

C(p) =
1

µh

Z p

0
h(u)du (5)

When this curve lies above (under) the 45� diagonal, health inequality is pro-poor (pro-

rich)6. An opposite conclusion may be reached if the analysis is based on an ill-health

variable.

In addition to providing a graphical representation of the distribution of health statuses,

Makdissi and Yazbeck (2014) explain how health concentration curves may be used to iden-

6In this context pro-poor means that the poor have better health than the rich
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tify orderings of distributions that are robust for all rank-dependent relative socioeconomic

health inequality indices.

Theorem 1 Let f1
Y,H and f2

Y,H represent two joint densities of income and health. I(h1) 

I(h2) for all I(h) 2 ⇤2 if and only if

C1(p) � C2(p) for all p 2 [0, 1].

Theorem 1 is very powerful since it allows for the identification of orderings of the

distribution that would remain the same for all rank-dependent relative socioeconomic

health inequality indices. However, this robustness comes at a cost, as following such an

approach produces an incomplete ordering of socioeconomic health distributions.7

When the ranking between two distributions is not robust, two paths may be followed.

First, the analyst may decide to rely on a particular index by imposing a specific parametric

form on the weight function (as seen in section 3.3). In this case, depending on whether

the analyst’s ethical position is compatible with sensitivity to poverty or sensitivity to

extremities, the extended health concentration indices or the symmetric indices may be

chosen. While this solution leads to complete orderings of distributions, this ordering is

contingent to the ethical position adopted by the analyst and the specific mathematical

structure of the chosen index.

An alternative solution is to increase the power of orderings by restricting the set of

admissible rank-dependent relative socioeconomic health inequality indices either via pro-

poor or via pro-extreme rank transfer sensitivity principles. It is important to note that

these two sets of principles are based on di↵erent ethical views regarding what constitutes

an increase in socioeconomic health inequality aversion (i.e., sensitivity to poverty and

sensitivity to extremities). As a result, choosing one path or the other leads to di↵erent

subsets of indices and may potentially lead to di↵erent orderings of distributions. In this

7For a complete proof see Makdissi and Yazbeck (2014).
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case, the ordering will not depend on a specific parametric form of the weight function and

therefore they will be robust. However, as in any dominance tests, the orderings will still

be contingent to the ethical position taken by the analyst. In what follows, we will take the

second path and develop tests that will identify robust orderings for both types of higher

order ethical principles.

5.1.1 Pro-poor ethical principles

To test if orderings are robust for a subset of rank-dependent relative socioeconomic health

inequality indices obeying these pro-poor ethical principles, Makdissi and Yazbeck (2014)

have defined higher order s-health concentration curves, Cs(p).8 These are defined as:

Cs(p) =

Z p

0
Cs�1(u)du, (6)

where C2(p) = C(p). It is possible to identify robust rankings of distributions using these

higher order health concentration curves.

Theorem 2 Let f1
Y,H and f2

Y,H represent two joint densities of income and health. I(h1) 

I(h2) for all I(h) 2 ⇤s
⇡ if and only if

Cs
1(p) � Cs

2(p) for all p 2 [0, 1].

Theorem 2 proposes a graphical test that is, once again, based on the non-intersection

of two curves; the s-health concentration curves associated with the two distributions.9 If

there is an intersection between the two curves at order s, the analyst can impose more

restriction on the subset of rank-dependent relative socioeconomic health inequality indices

by imposing the pro-poor transfer sensitivity principle of order s + 1. At the limit, when

s ! 1, a complete ranking is obtained. In this limit case, the test consists of comparing

only limp!0
h
1

(p)
µh1

and limp!0
h
2

(p)
µh2

.

8This curves adapt to the health inequality context the concept of s-concentration curves proposed by
Makdissi and Mussard (2008) in the context of marginal indirect tax reforms.

9For a complete proof, please refer to Makdissi and Yazbeck (2014).
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5.1.2 Symmetry around the median and pro-extreme rank ethical principles

As mentioned earlier, the analyst can choose to restrict the set of admissible rank-dependent

relative socioeconomic health inequality indices by imposing symmetry around the median

and pro-extreme rank transfer sensitivity. To test if orderings are robust for a subset

of socioeconomic health inequality indices obeying these normative principles, we need to

introduce a new graphical tool, the s-health range curves, Rs(p). Let r(p) = h(1�p)�h(p).

These curves are formally defined as:

Rs(p) =

⇢ 1
µh

R p
0 r(u)du if s = 2R p

0 Rs�1(u)du if s 2 {3, 4, . . . } (7)

As for the case of pro-poor ethical principle, robust rankings of socioeconomic health dis-

tributions can be identified using these health range curves.

Theorem 3 Let f1
Y,H and f2

Y,H represent two joint densities of income and health. I(h1) 

I(h2) for all I(h) 2 ⇤s
⇢ if and only if

Rs
2(p) � Rs

1(p) for all p 2 [0, 0.5].

Theorem 3 provides a simple graphical test for the identification of robust orderings.

Note that since ⇤s
⇢ ⇢ ⇤2, the test based on R2(p) curves has more ordering power (is

less general) than the test based on health concentration curves as in Theorem 1.10 This

increase in ordering power is obtained by imposing the principle of symmetry around the

median on the indices. If the analysts think that a good relative socioeconomic health

inequality index should pass the upside-down test, then he/she should use R2(p) curves,

instead of health concentration curves C(p). In this case, the only cost associated with the

increase in the ordering power of the test is imposing symmetry of ⌫(p).

If there is an intersection between two health range curves at order s, the analyst can

impose more restriction on the subset of rank-dependent socioeconomic health inequality

10For a complete proof, please refer to Appendix A1
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indices by imposing the extreme rank transfer sensitivity principle of order s + 1. At the

limit, when s ! 1, a complete ranking is obtained. In this limit case, the test consists of

comparing only limp!0
r
1

(p)
µh1

and limp!0
r
2

(p)
µh2

.

5.2 Health achievement orderings

Robust rankings of health achievement can be identified using the generalized health concen-

tration curve. At quantile p, the generalized health concentration curve gives the absolute

contribution of the p poorest individuals to average health. In other words, its value in-

dicates the average health that would be attained if total health was only the sum of the

health of these p poorest individuals. Formally, the generalized health concentration curve,

GC(p), is defined on the support [0, 1] as

GC(p) =

Z p

0
h(u)du (8)

Makdissi and Yazbeck (2014) explain how generalized health concentration curves may

be used to identify orderings of distributions that are valid for all rank-dependent health

achievement indices.

Theorem 4 Let f1
Y,H and f2

Y,H represent two joint densities of income and health. A(h1) �

A(h2) for all A(h) 2 ⌦2 if and only if

GC1(p) � GC2(p) for all p 2 [0, 1].

Theorem 4 allows for the identification of health achievement orderings that remain

valid for all rank-dependent health achievement indices.11 As in the case of Theorem 1,

this robustness comes at the cost of an incomplete order. As earlier, in case there is no

dominance, two paths may be followed: choosing a particular index or imposing higher

order ethical principles. As in the case of inequality indices, we will follow the second path.

11For a complete proof, please refer to Makdissi and Yazbeck (2014).
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5.2.1 Pro-poor ethical principles

Let us first consider pro-poor transfer sensitivity principles. Makdissi and Yazbeck (2014)

introduce s-generalized health concentration curves, GCs(p), for the identification of these

robust orderings. These curves are defined on the support [0, 1] as

GCs(p) =

Z p

0
GCs�1(u)du, (9)

where GC2(p) = GC(p). Robust rankings of distributions can be identified using these

higher order generalized health concentration curves.

Theorem 5 Let f1
Y,H and f2

Y,H represent two joint densities of income and health. A(h1) �

A(h2) for all A(h) 2 ⌦s
⇡ if and only if

GCs
1(p) � GCs

2(p) for all p 2 [0, 1].

Theorem 5 proposes another graphical test based on the non-intersection of two curves,

the s-generalized health concentration curves associated with the two distributions.12 If

there is an intersection between the two curves at order s, the analyst can impose more

restriction on the subset of rank-dependent achievement indices by imposing the pro-poor

transfer sensitivity principle of order s + 1. At the limit, when s ! 1, a complete rank-

ing is obtained. In this limit case, the test consists of comparing only limp!0 h1(p) and

limp!0 h2(p).

5.2.2 Symmetry around the median and pro-extreme rank ethical principles

An alternative path to imposing pro-poor ethical principle consists in imposing symmetry

around the median and pro-extreme rank ethical principles to restrict the set of admissible

health achievement indices. The identification of these orderings is based on a new graphical

tool, the s-generalized health range curves, GRs(p). These curves are defined on the support

12For a complete proof, please refer to Makdissi and Yazbeck (2014)
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[0, 0.5] as:

GRs(p) =

⇢ R p
0 r(u)du if s = 2R p

0 GRs�1(u)du if s 2 {3, 4, . . . } (10)

Robust rankings of socioeconomic health distributions can be identified using these health

range curves.

Theorem 6 Let f1
Y,H and f2

Y,H represent two joint densities of income and health. A(h1) �

A(h2) for all A(h) 2 ⌦s
⇢ if and only if

GRs
2(p) � GRs

1(p) for all p 2 [0, 0.5].

and,

µh1 � µh2

Theorem 6 o↵ers another graphical test.13 However, if we compare it with the test in

Theorem 5, the identification of robust rankings for indices obeying the symmetry around

the median and pro-extreme rank transfer principles has an additional condition on the

average of health status when compared to pro-poor transfer principles.

6 Estimation and Inference

In this section, we show how to estimate the curves that provide the rankings that are

robust to the class of indices chosen by the analyst. We then show how one can perform

statistical inference on them.

6.1 Concentration and Range Curves estimators

Suppose we have a random sample of N individuals drawn from a joint distribution fH,Y .

We will first show how to construct estimators of C and R, Cs and Rs for s > 2 and then

show how to test dominance using those curves. We start by showing that C and R can

13For a complete proof, please refer to Appendix A1.
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both written in a form that is directly amenable to non-parametric estimation. First, note

that C(p) can be re-written as

C(p) =
1

µh

Z 1

0
(u < p)h(u)du, (11)

a simple estimator for C(p) can be written as follows:

bC(p) =
1

Nh̄

NX

i=1

hi (yi 6 F̂�1
Y (p)) (12)

from a sample (yi, hi) for i = 1, . . . , n. Here h̄ is the sample average and F̂�1
Y is a non-

parametric estimator of the quantile function of Y based on the order statistics of (yi).

Estimators for Cs(p) can be recursively derived from that of C(p) (for details see Appendix

A2.1). The resulting estimators are as follows:

bCs(p) =
1

Nh̄

NX

i=1

hi
(p� F̂Y (yi))s�2

(s� 1)!
(yi 6 F̂�1

Y (p)) (13)

The generalized concentration curve can be therefore written as:

dGC
s
(p) = h̄ bCs(p) (14)

In a similar fashion, we can construct an estimator for R. Let us first rewrite R(p) in the

same form as C(p):

µhR(p) =

Z p

0
r(u)du (15)

Given that r(u) can be written as h(1 � u) � h(u) for u 2 [0, 1], we can re-write this

relationship as follows:

µhR(p) =

Z 1

1�p
h(u)du�

Z p

0
h(u)du, (16)

which can be re-written as follows:

µhR(p) =

Z 1

0
[ (u > 1� p)� (u < p)]h(u)du (17)
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A simple estiamtor for R(p) can be written as follows:

bR(p) =
1

Nh̄

(
NX

i=1

hi[ (yi > F̂�1
Y (1� p))]�

NX

i=1

hi[ (yi 6 F̂�1
Y (p))]

)
(18)

Similarly to Cs, it is possible to recursively compute estimators of Rs by first plugging the

estimators of bRs�1, integrating them analytically and then by recursively computing bRs

(see details in Appendix A2.2). The resulting estimators are as follows:

bRs
(p) =

1

Nh̄

NX

i=1

hi
1

(s� 1)!
ps�2(p+ (s� 1)[F̂Y (yi)� 1])[ (yi > F̂�1

Y (1� p))]

� 1

Nh̄

NX

i=1

hi
(p� F̂Y (yi))s�2

(s� 1)!
[ (yi 6 F̂�1

Y (p))] (19)

The generalized range curve can be written as follows:

dGR
s
(p) = h̄ bRs(p) (20)

6.2 Dominance tests

Let us denote by L one of the curves from the previous section (e.g., C(p)). Let L1 and

L2 two di↵erent theoretical curves (corresponding to two di↵erent theoretical populations).

Assume that we have an i.i.d. sample of size n1 from the random variable corresponding

to first theoretical curve L1 and an i.i.d. sample of size n2 from the random variable

corresponding to the second theoretical curve L2. Denote those samples by S1 and S2

respectively. As we are interested in testing the dominance between two distributions, we

define the new function L12(p) := L1(p) � L2(p) for p 2 [0, 1]. The null and alternative

hypotheses we interested in are:

H0 : L12(p) 6 0, 8p

H1 : L12(p) > 0 for some p
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When performing inference, for each pair of distributions we will test a set of inequalities.

In this paper, we will test for H0: L12  0 for all p and H0: L12 � 0 for all p where

under the null we assume dominance. Because no statistic can distinguish between weak

and strict dominance, the test focuses on weak dominance. If we can reject one of the null

hypotheses of dominance for the same pair of distributions, then we have evidence against

that null of the dominance of one distribution over the other. While one may think that it

is more intuitive to test the null hypothesis of non-dominance and hence establish a case of

dominance, such a test requires a strong evidence against the null, which may be di�cult

to obtain over the entire support (Davidson and Duclos, 2013).

The nonparametric estimators L̂1 and L̂2 of L1 and L2 respectively can be constructed

from those two samples and L̂12(p) = L̂1(p) � L̂2(p). Let ⌧ = supp L12(p), it is straight-

forward to construct a KS type test statistic ⌧̂ that is a non-parametric estimator of ⌧ as

follows:

⌧̂ =

r
n1n2

n1 + n2
sup
p

L̂12(p). (21)

The asymptotic distribution of ⌧̂ will be that of a functional of two-dimensional Gaussian

process that is very complicated to compute. To overcome this issue, we will rely on a

bootstrap procedure as in Shechtman et al. (2008). For a detailed description of the

bootstrap procedure, please refer to the Appendix A3.

As for the indices obeying the symmetry around the median principle and pro-extreme

rank principles (i.e., theorem 6), the associated the joint test H1
0 and H2

0 can be defined as

follows,

H1
0 : GR12(p) 6 0, 8p

H1
1 : GR12(p) > 0 for some p,
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and,

H2
0 : µ1 � µ2

H2
1 : µ1 < µ2,

Where the nonparametric estimators dGR1 and dGR2 of GR1 and GR2 respectively can be

constructed from those two samples and dGR12(p) = dGR1(p) � dGR2(p). The test statistic,

⌧̂ , to test the H1
0 for both tests takes the same form, however, the joint test (i.e., H1

0 and

H2
0 ) has an additional condition on the mean that needs to be tested when establishing the

dominance results. To account for this additional test, we adjust the significance level of

the joint test by relying on the Holm procedure as described in the Lehmann and Romano

(2005) [chapter 9 p. 348]. The purpose of the procedure is to control for the family-wise

error rate (FWER), which is the probability of one or more false rejections not exceeding

a certain level, by making sure that this error is below a certain threshold ↵.

Let I ⇢ {1, 2} be the set of indices for which H i
0 is true for i = 1, 2, then the objective is

to make Pr
�
reject any H i

0 with i 2 I
 
6 ↵. Given the two tests H1

0 and H2
0 with p-values

p1 and p2, the Holm procedure works as follows. First, order the p-values p1 6 p2 and label

the correspondingly H1
0 and H2

0 . If p1 > ↵
2 , then we do not reject both hypotheses and

stop. However, if p1 < ↵
2 and p2 > ↵, then we reject H1 and do not reject H2

0 . Otherwise,

reject both hypotheses. It should be noted that if we reject one of the two hypothesis, then

we reject dominance.

7 Empirical illustration

To provide evidence that the di↵erences between di↵erent ethical principles adopted by the

analyst influence the type conclusion reached, we conduct an empirical illustration of the

methods proposed using National Health Interview Survey data from years 1997 and 2014.

We will focus on comparisons of two ill-health variables that have been of great interest in
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the health economics literature: cigarettes consumption (i.e., the number of cigarettes/day)

and overweightedness (defined as max[0,BMI-25]). Given that the empirical application is

mainly for illustration purposes, we will refrain from drawing policy recommendation, but

we will indicate potential interesting paths.

The NHIS monitors health outcomes of Americans since 1957. It is a cross-sectional

household interview survey representative of American households and non-institutionalized

individuals. It contains data on a broad range of health topics that are collected via personal

household interviews. For comparison purposes, we will focus 1997 and 2014 public use data

and restrict our attention to the adult population. After applying all these restrictions

to the data, we end up with a sample size is 34776 for overweightedness and 35667 for

cigarette consumption in 1997 and is 35197 for overweightedness and 36363 for cigarette

consumption in 2014. We will use the sample adult file to extract information on health-

related behaviour and use family income adjusted for family size to infer the socioeconomic

rank of individuals.14

We will first start the illustration by looking at comparisons from an inequality per-

spective then we will revisit these comparisons from an achievement perspective.

7.1 Comparisons of inequalities in health related behaviours and out-
comes

In the first set of inequalities comparisons presented in Table 1 we will focus on comparisons

at the national level. These comparisons will be complemented by regional comparisons in

Table 2. Cigarette consumption seems to display a higher socioeconomic health inequality

in 2014 than in 1997 (Figure 5). There is a clear dominance of the concentration curve

C2
2014 over C2

1997 without any intersection on the support. As is shown in Table 1 when the

null hypothesis of the dominance of C2
1997 over C2

2014 there is a very weak evidence against

14We compute equivalent income by dividing family income by the square root of household size.
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the null. However, when the null hypothesis of the dominance of C2
2014 over C2

1997 is tested,

there is strong evidence against the null (p-value=0.0000). As a result, one can conclude

that there is more socioeconomic health inequality in smoking in 2014 for all indices obeying

the income-related health transfer principle. While deriving any policy conclusion is beyond

the scope of this paper, it is important to underline that an increase in the disparities at

the cigarette consumption level may be a major contributor to the widening disparities in

health outcomes.

Figure 5: C2 comparison: cigarette consumption

In addition to testing dominance at the second order (i.e., C2) we provide a test for order

3 dominance, C3, and order 2 dominance for indices meeting the upside-down test criteria

(i.e., ranges curves R2). We know from our theoretical results that if dominance is obtained

at the second order for the C2, it follows that dominance will be obtained for both higher

order dominance Cs and second order range curves R2. To show the empirical validity of

these theoretical results we conduct this additional test. Test results presented in the lower

panel of Table 1 confirm what was theoretically expected; there is more socioeconomic
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Table 1: Dominance tests for Cs and Rs comparisons for cigarette consumption and over-
weightedness

p-value
cigarette cons. overweightedness
s=2 s=3 s=2 s=3

H0 : Cs
1997(p) 6 Cs

2014(p), 8p
H1 : Cs

1997(p) > Cs
2014(p) for some p 0.9970 0.8248 0.0060 0.0010

H0 : Cs
2014(p) 6 Cs

1997(p), 8p
H1 : Cs

2014(p) > Cs
1997(p) for some p 0.0000 0.0000 0.0000 0.8658

H0 : Rs
1997(p) 6 Rs

2014(p), 8p
H1 : Rs

1997(p) > Rs
2014(p) for some p 0.0000 0.5305

H0 : Rs
2014(p) 6 Rs

1997(p), 8p
H1 : Rs

2014(p) > Rs
1997(p) for some p 0.9670 0.0020

health inequality in smoking in 2014 than 1997. This is true for all indices obeying the

income-related health transfer principle and for the subset of these indices obeying the

pro-poor transfer sensitivity principle. Similarly, as there is more socioeconomic health

inequality in smoking in 2014 for all indices obeying the income-related health transfer

principle, this result applies to the subset of these indices passing the upside-down test.

Another health variable that one may want to consider in the analysis of socioeconomic

health inequality is overweightedness (defined as max[0, BMI � 25]). Looking at the top

left panel in Figure 6, one can notice that the two overweightedness concentration curves

(C2) intersect. We, therefore, cannot reject the null hypothesis that they are equal as

there is strong evidence against the null when dominance of C2
1997 over C2

2014 and domi-

nance of C2
2014 over C2

1997 are tested at the 1% level (p-values are respectively 0.0060 and

0.0000 in Table-1).15 As a result, we cannot assess whether socioeconomic health inequality

in overweightedness has increased or decreased when we consider all indices obeying the

15It is important to note that if one decreases the level to 0.5%, the dominance conclusions reached at
order 2 will not hold at third order. While this may seem in contradiction with the theory at first, it is not
the case in this application. In reality this “incoherence” between the second and third order dominance
is due to the magnitude of the distance just before p = 0.8 in the first panel of Figure 6. Given that this
distance is quite large, integrating over the support of the second order curves results apparently flipped
around result at the third order.
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income-related health transfer principle. As mentioned earlier in the paper, when there is

no clear dominance in the context of concentration curves (i.e., C2), one can consider the

subset of indices obeying a higher order ethical such as the pro-poor transfer sensitivity

principle (i.e. considering, C3) so we follow this path. The results shown in the top right

panel of Figure 6 allow for the conclusion that socioeconomic health inequality in over-

weightedness decreases from 1997 to 2014. In other words, there is more socioeconomic

health inequality in overweightedness in 1997 for all indices obeying the income-related

health transfer principle as well as the pro-poor transfer sensitivity principle. An alterna-

tive path may be taken in the absence of dominance at the second order if one is willing to

restrain the set of indices considered to the subset of indices passing the upside-down test

(i.e., R2 curves). As shown in the lower panel of Figure 6, following this paths leads to the

same conclusion as the one reached when exploring higher order dominance in the case of

concentration curves. Indeed, there is more socioeconomic health inequality in overweight-

edness in 1997 for all indices obeying the income-related health transfer principle and the

upside-down test and these results are supported by the associated p-values displayed in

Table 1. It is important to note that the subset of indices obeying higher order pro-poor

principles and the subset of indices that pass the upside-down test are disjoint. So while

the conclusions reached in this empirical application are the same, there is no reason for

this to be always the case.

As for regional comparisons, we focus our attention on the most recent year, 2014

and compare the Northeast, the West, the Midwest and the South.16 When we focus

on cigarette consumption, we notice there are no clear patterns of dominance and thus

no complete order.17 More specifically, at 5% significance level, the West dominates the

Northeast for all indices obeying pro-poor transfer sensitivity (i.e., ⇤3
⇡), and dominates the

16It is important to note that we chose the most recent year to save on space.
17It is important to note that the rows have lower socioeconomic inequality than the columns.
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Figure 6: Socioeconomic inequality in Obesity/Overweight

C2
(p) C3

(p)

R2
(p)
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Table 2: Regional dominance tests: cigarette consumption and overweightedness

Cigarette consumption

Northeast West Midwest South

Northeast - ND ND
West ⇤3

⇡
⇤⇤ and ⇤2

⇢
⇤⇤ - ⇤2

⇢
⇤⇤ ⇤2 ⇤⇤⇤

Midwest ND - ND
South ND ND -

overweightedness

Northeast West Midwest South

Northeast -
West ⇤2 ⇤⇤⇤ - ND ND
Midwest ⇤2 ⇤⇤ and ⇤3

⇡
⇤⇤⇤ and ⇤2

⇢
⇤⇤⇤ ND - ND

South ⇤2 ⇤⇤ and ⇤2
⇢

⇤⇤⇤ ND ND -

Significance levels ⇤⇤ 5%; ⇤⇤⇤ 1%

South for all indices (i.e., ⇤2). Also, for the subset passing the upside-down test, the West

dominates the Northeast, the Midwest at the second order. If increase the significance

level to 1%, then we only have one dominance result: the West dominates the South at

the second order for all indices (i.e., ⇤2). Turning our attention to regional dominance in

the case of overweightedness, we notice that the Northeast is dominated by the West, the

Midwest as well as the South. While the significance level and the order at which this

dominance occur vary by region, one can safely say that this dominance occurs at the 5%

significance level. If we were to increase the significance level to 1%, then the order and

subset of indices at which this dominance occurs changes. For instance, the Northeast is

dominated by the Midwest at the pro-poor third order instead of the second order. Also,

the Northeast is dominated by the South and the Midwest for all subset of indices passing

the upside-down test.
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7.2 Comparisons of health achievements in health related behaviours and
outcomes

In this section, we will be comparing health achievements between 1997 and 2014. To save

on space, Table 3 we will not report the p-values but rather report dominance along with

the standard notation to indicate the significance level of the dominance tests. To read

Table 3, one has to keep in mind that the columns dominate the rows; this means that

when there is dominance, the year that dominates has lower “ill health” level and hence

higher health achievement. Given that we are dealing with an “ill-health” variable it is

more sensible to talk about health failures rather than health achievements (see Makdissi,

Sylla and Yazbeck, 2013).18

Comparisons of generalized health concentration curve reveal that GC2
2014 dominates

GC2
1997 with strong evidence against the null hypothesis. This means that, as far as cigarette

consumption is concerned, there is more health failure in 1997 than in 2014 for all health

achievement(/failure) indices obeying the principle of income-related health transfer. As in

the case of inequality, we reach the same conclusion if we test for a higher order dominance

(i.e., GC3). This, once again, confirms what was theoretically expected. In other words,

since there is more health failure (when is considered smoking) in 1997 for all indices obeying

the income-related health transfer principle, it is expected this is true for the subset of these

indices that are obeying the pro-poor transfer sensitivity principle. As mentioned earlier,

the analyst may argue that the principle of pro-poor transfers sensitivity is debatable and

focus on the set of indices that pass the upside-down test. To account for this possibility,

we test for dominance using the generalized health range curves. Empirical results show

that there is more failure in smoking in 1997 for all indices obeying the income-related

health transfer principle and the upside-down test. Given that the set of indices that pass

18It is important to note that the rows have lower failure than the columns in the tables which means
that the rows have a higher achievement.
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Table 3: Evolution of health failures: 1997-2014

1997 2014

1997 - overweightedness: ⌦2 ⇤⇤⇤

2014 Cigarette: ⌦2 ⇤⇤⇤ -

Significance levels: ⇤⇤ 5%; ⇤⇤⇤ 1%.

the upside-down test are subsets of the indices belonging to ⌦2, we can re-write the results

concisely by saying that there is a dominance at the second order for all rank-dependent

indices that is all indices in ⌦2. As for overweightedness, we have the mirror picture of

the cigarette consumption comparison as there is more failure in 2014 than in 1997. These

second order dominance results are statistically significant at the 1% level and hold for all

rank-dependent indices (see Table 3).

Before turning to the regional comparisons, it is important to compare the results ob-

tained from the inequality analysis with the results obtained from the achievement analysis

to emphasize the policy relevance of developing and using both approaches in an inequality

analysis. While the inequality analysis revealed that there is more inequality in cigarette

consumption in 2014, the analysis on health achievement (or failure) shows that there is a

lower failure in health in 2014 than 1997. So while the inequality analysis may show that

there are concerns regarding socioeconomic inequality in smoking behaviour, this same be-

haviour seems to be less prevalent when assessed by a measure that puts higher weight for

smoking behaviour when it occurs in the lower part of the income distribution. The same

logic applies to the results obtained in overweightedness. The socioeconomic inequalities

are lower in 2014 than in 1997 but the failure is higher in 2014 than in 1997. The results

discussed in this section indicate that focusing on inequality alone provides an incomplete

picture of the situation.

As for regional comparisons for health failures, it is clear that we have more results

than in the inequality section. The first panel of Table 4 focuses on cigarette consumption
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Figure 7: Second order health failures comparisons

Cigarette

overweightedness

Table 4: Regional dominance tests: cigarette consumption and overweightedness

Cigarette consumption

Northeast West Midwest South

Northeast - ⌦2 ⇤⇤⇤ ⌦2 ⇤⇤⇤

West ⌦2 ⇤⇤⇤ - ⌦2 ⇤⇤⇤ ⌦2 ⇤⇤⇤

Midwest -
South ⌦2 ⇤⇤⇤ -

overweightedness

Northeast West Midwest South

Northeast - ⌦2 ⇤⇤⇤ ⌦2 ⇤⇤⇤

West ⌦2 ⇤⇤ and ⌦2
⇢

⇤⇤⇤ - ⌦2 ⇤⇤⇤ ⌦2 ⇤⇤⇤

Midwest - ND
South ND -

Significance levels ⇤⇤ 5%; ⇤⇤⇤ 1%
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in 2014 and shows evidence that we have dominance results for all region at the 1% level.

This allows for a complete ordering of regions in ascending inequalities as follows West,

Northeast, South and Midwest. The second panel in Table 4 shows second order dominance

results for overweightedness at mixed significance levels (i.e., some are at the 5% level and

others are at the 1% level). Unlike the case of cigarette consumption, we do not have a

complete ordering of regions for overweightedness. All we can say is that the West dominates

the Northeast, the Midwest and the South and that the Northeast dominates the Midwest

and South. To assess whether we can have a dominance result at a higher significance level

(i.e., 1% level instead of 5% level) for the Northeast and West, we follow the path followed

in the inequality section by focusing on indices that pass the upside-down text. In doing so,

one needs to remember that testing for achievement (/failure) for these subsets of indices

requires a joint test on the range curves and the average value of the health variable. Figure

8 displays GR2 curves for the two regions where GR2
W seem to be everywhere above (or

equal) to GR2
NE . The results of the associated statistical tests displayed in Table 5 suggest

that we cannot reject dominance and that the West has less failure in overweightedness

than the Northeast if we focus our attention on indices that pass the upside-down test and

obey the principle of income-related health transfer.

8 Conclusion

In this paper, we adopted a unified approach to indices obeying pro-poor ethical principles as

well as the symmetry around the median ethical principle and pro-extreme rank principles.

To do so, we first fill the gap in the literature by formalizing the ethical principles associated

with the symmetric indices (i.e., the set of indices that pass the upside-down test). We coin

these ethical principles as the symmetry around the median ethical principle and pro-extreme

rank ethical principles. We then develop the curves associated with these principles, the
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Figure 8: GR2 comparison: overweightedness

Table 5: Dominance tests for failure in overweightedness between the Northeast and the
West for indices belonging to ⌦2

⇢

p-value
H0 : GR2

W (p) 6 GR2
NE(p), 8p

H1 : GR2
W (p) > GR2

NE(p) for some p 0.0040

H0 : GR2
NE(p) 6 GR2

W (p), 8p
H1 : GR2

NE(p) > GR2
W (p) for some p 0.9219

H0 : µW > µNE

H1 : µW < µNE 0.2843

H0 : µNE > µW

H1 : µNE < µW 0.7157

H0 : µW = µNE

H1 : µW 6= µNE 0.5876
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health range curve and the s-health range curves, and derive the dominance conditions that

allow us to identify robust orderings of joint distributions of income and health. Having

filled the gap in the inequality measurement literature, we proceed to the literature on the

statistical inference and provide the natural estimators for the indices obeying both pro-

poor and pro-extreme rank ethical principles. Based on these estimators and on the work

of Linton et al. (2005) and Schechtman et al. (2008) we develop KS-type statistical tests

associated with the dominance tests for indices obeying both ethical principles. Finally,

to illustrate the applicability of the methods proposed we provide an empirical illustration

using information on overweightedness and cigarette consumption from the NHIS 1997 and

2014.
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Appendix

A1 Proofs for section 4

Proofs of Theorems 1, 2, 4, 5 are provided by Makdissi and Yazbeck (2014).

Proof of Theorem 3. First note that for I(h) 2 ⇤s
⇢, equation (4) can be rewritten as

I(h) = � 1

µh

Z 0.5

0
⌫(p)r(p)dp (A1)

Integrating by parts equation (A1), we get

I(h) = �⌫(p)R2(p)
��0.5
0

+

Z 0.5

0
⌫(1)(p)R2(p)dp. (A2)

Since by definition R2(0) = 0 and ⌫(0.5) = 0 for all indices I(h) 2 ⇤s
⇢, the first term on the

right hand side of the equation is nil. This yields to

I(h) =

Z 0.5

0
⌫(1)(p)R2(p)dp. (A3)

Now assume that for s� 1, we have

I(h) = (�1)s�1
Z 0.5

0
⌫(s�2)(p)Rs�1(p)dp. (A4)

Integrating by parts equation (A4) yields

I(h) = (�1)s�1

⇢
⌫(s�2)(p)Rs(p)

���
0.5

0
�
Z 0.5

0
⌫(s�1)Rs(p)dp

�
. (A5)

Since by definition Rs(0) = 0 and ⌫(s�2)(0.5) = 0 for all indices I(h) 2 ⇤s
⇢, the first term

in the braces on the right hand side of the equation is nil. This yield

I(h) = (�1)s
Z 0.5

0
⌫(s�1)(p)Rs(p)dp. (A6)

Given that equations (A3) and (A6) both conform to the relation depicted in equation

(A4), it follows that equation (A6) holds for all s 2 {2, 3, . . . }. Let �I12 = I(h2) � I(h1).

From equation (A6), we get

�I12 = (�1)s
Z 0.5

0
⌫(s�1)(p) [Rs

2(p)�Rs
1(p)] dp. (A7)
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Note that (�1)s⌫(s�1)(p) is non negative. This implies that if Rs
2(p) � Rs

1(p) for all p 2

[0, 0.5], then �I12 � 0. This proves for su�ciency of the condition.

Having provided a su�ciency condition let us now prove for the necessity of the con-

dition. Consider now the set of indices I(h) 2 ⇤s
⇢ for which ⌫(s�2)(p) takes the following

form:

⌫(s�2)(p) =

8
<

:

(�1)s�1" 0  pc
(�1)s�1 [pc + "� p] pc  p  pc + "

0 p � pc + "
(A8)

where pc 2 [0, 0.5]. Since ⌫(p) is di↵erentiable almost everywhere, it satisfies the conditions

in the definition of ⇤s
⇢. Di↵erentiating equation (A8) yields

⌫(s�1)(p) =

8
<

:

0 0  pc
(�1)s pc  p  pc + "
0 p � pc + "

(A9)

Imagine now that Rs
2(p) < Rs

1(p) on an interval [pc, pc + "] for " that can be arbitrarily

close to 0. For any ⌫(p) obeying the relation in equation (A8), the expression in equation

(A7) is negative. Hence it cannot be that Rs
2(p) < Rs

1(p) for p 2 [pc, pc + "]. This proves

the necessity of the condition.

Proof of Theorem 6. First note that for A(h) 2 ⌦s
⇢, equation (1) can be rewritten as

A(h) =

Z 1

0
(1� ⌫(p))h(p)dp (A10)

A(h) = µh �
Z 1

0
⌫(p)h(p)dp (A11)

A(h) = µh +

Z 0.5

0
⌫(p)r(p)dp (A12)

Integrating by parts equation (A12), we get

A(h) = µh + ⌫(p)GR2(p)
��0.5
0

�
Z 0.5

0
⌫(1)(p)GR2(p)dp. (A13)

Since by definition GR2(0) = 0 and ⌫(0.5) = 0 for all indices A(h) 2 ⌦s
⇢, the second term

on the right hand side of the equation is nil. This yields to

A(h) = µh �
Z 0.5

0
⌫(1)(p)GR2(p)dp. (A14)
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Now assume that for s� 1, we have

A(h) = µh + (�1)s�2
Z 0.5

0
⌫(s�2)(p)GRs�1(p)dp. (A15)

Integrating by parts the second term of the r.h.s. of equation (A15) yields

A(h) = µh + (�1)s�2

⇢
⌫(s�2)(p)GRs(p)

���
0.5

0
�
Z 0.5

0
⌫(s�1)GRs(p)dp

�
. (A16)

Since by definition GRs(0) = 0 and ⌫(s�2)(0.5) = 0 for all indices A(h) 2 ⌦⇢, the first term

in the braces on the right hand side of the equation is nil. This yield

A(h) = µh + (�1)s�1
Z 0.5

0
⌫(s� 1)(p)GRs(p)dp. (A17)

Given that equations (A14) and (A17) both conform to the relation depicted in equation

(A15), it follows that equation (A17) holds for all s 2 {2, 3, . . . }. Let�A12 = A(h2)�A(h1).

From equation (A17), we get

�A12 = µh2 = µh1 + (�1)s�1
Z 0.5

0
⌫(s�1)(p) [GRs

2(p)�GRs
1(p)] dp. (A18)

Note that (�1)s�1⌫(s�1)(p) is non positive. This implies that if GRs
2(p) � GRs

1(p) for all

p 2 [0, 0.5], then (�1)s�1
R 0.5
0 ⌫(s�1)(p) [GRs

2(p)�GRs
1(p)] dp � 0. If in addition, µh2  µh1,

then �A12  0. This proves for su�ciency of the condition.

Having provided a su�ciency condition let us now prove for the necessity of the condi-

tion. In order to prove necessity, we need to consider three cases:

1. µh1 < µh2 together with GRs
2(p) � GRs

1(p) for all p 2 [0, 0.5]

2. GRs
2(p) < GRs

1(p) on some arbitrary small interval [pc, pc+"] together with µh1 = µh2

3. GRs
2(p) < GRs

1(p) on some arbitrary small interval [pc, pc+"] together with µh1 > µh2

Case 1: Consider the set of indices A(h) 2 ⌦s
⇢ for which ⌫(s�2)(p) is constant for all

p 2 [0, 0.5]. This weight function ⌫(p) satisfies the conditions in the definition of ⌦s
⇢. Since
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⌫(s�1)(p) = 0 for all p 2 [0, 0.5], (�1)s�1
R 0.5
0 ⌫(s�1)(p) [GRs

2(p)�GRs
1(p)] dp = 0. From

equation (A18) this implies that �A12 > 0. Hence it cannot be that µh1 < µh2.

Case 2: Consider the set of indices A(h) 2 ⌦s
⇢ for which ⌫(s�2)(p) takes the following form:

⌫(s�2)(p) =

8
<

:

(�1)s�1" 0  pc
(�1)s�1 [pc + "� p] pc  p  pc + "

0 p � pc + "
(A19)

where pc 2 [0, 0.5]. Since ⌫(p) is di↵erentiable almost everywhere, it satisfies the conditions

in the definition of ⌦s
⇢. Di↵erentiating equation (A19) yields

⌫(s�1)(p) =

8
<

:

0 0  pc
(�1)s pc  p  pc + "
0 p � pc + "

(A20)

Imagine now that GRs
2(p) < GRs

1(p) on an interval [pc, pc + "] for " that can be arbitrarily

close to 0. For any ⌫(p) obeying the relation in equation (A19), the expression in equation

(A18) is negative. Hence it cannot be that GRs
2(p) < GRs

1(p) for p 2 [pc, pc+"] if µh1 = µh2.

Case 3: Consider the set of indices A(h) 2 ⌦s
⇢ for which ⌫(s�2)(p) takes the following form:

⌫(s�2)(p) =

8
<

:

(�1)s�1 0  pc
(�1)s�1 [pc + "� p] pc  p  pc + "

0 p � pc + "
(A21)

where  >
�µh1�µh2

"

�
and pc 2 [0, 0.5]. Since ⌫(p) is di↵erentiable almost everywhere, it

satisfies the conditions in the definition of ⌦s
⇢. Di↵erentiating equation (A21) yields

⌫(s�1)(p) =

8
<

:

0 0  pc
(�1)s pc  p  pc + "

0 p � pc + "
(A22)

Imagine now that GRs
2(p) < GRs

1(p) on an interval [pc, pc + "] for " that can be arbitrarily

close to 0. For any ⌫(p) obeying the relation in equation (A21), the expression in equation

(A19) is negative. Hence it cannot be that GRs
2(p) < GRs

1(p) for p 2 [pc, pc+"] if µh1 > µh2.

Cases 1 to 3 prove the necessity of the condition.
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A2 Construction of Cs(p) and Rs(p) estimators

A2.1 Estimator for Cs(p)

As seen earlier, the health concentration curve C(p) is defined as follows

C(p) =
1

µh

Z p

0
h(u)du. (A23)

It can be re-written as

C(p) =
1

µh

Z 1

0
(u < p)h(u)du. (A24)

Apply the transformation y = F�1
Y (u) (with jacobian term fY (y))

C(p) =
1

µh

Z 1

0
(y < F�1

Y (p))h(FY (y))fY (y)dy (A25)

Let fH|Y be the conditional density of H on Y insert the following definition of the condi-

tional expectation

E[H|Y = y] =

Z 1

0
hfH|Y (h|y)dh (A26)

in equation A25 and using the definition for the joint density fH,Y = fH|Y fY , we get

C(p) =
1

µh

Z 1

0

Z 1

0
h (y < F�1

Y (p))fH,Y (h, y)dhdy, (A27)

which gives the simple estimator for C(p) from a sample (yi, hi) for i = 1, . . . , n:

Ĉ(p) =
1

Nh̄

NX

i=1

hi (yi 6 F̂�1
Y (p)). (A28)

Here h̄ is the sample average and F̂�1
Y is a non-parametric estimator of the quantile function

of Y based on the order statistics of (yi).

Estimators for Cs(p) could be recursively derived from that of C(p) (derivation of this result

is in section A2.3).

Ĉs(p) =
1

Nh̄

NX

i=1

hi
(p� F̂Y (yi))s�2

(s� 1)!
(yi 6 F̂�1

Y (p)) (A29)
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A2.2 Estimator for Rs(p)

In a similar fashion we can construct an estimator for R. Let us first rewrite R(p) in the

same form as C(p):

µhR(p) =

Z p

0
r(u)du (A30)

Given that Define r(u) can be written as h(1� u)� h(u) for u 2 [0, 1], we can re-write this

relationship as follows:

µhR(p) =

Z 1

1�p
h(u)du�

Z p

0
h(u)du, (A31)

which can be re-written as follows:

µhR(p) =

Z 1

0
[ (u > 1� p)� (u < p)]h(u)du (A32)

If ones defines a new variable t = 1� u, then u = �(t) = 1� t. In this framework,

Z p

0
h(1� u)du =

Z 1�p

1
h (1� �(t))�0(t)dt (A33)

=

Z 1�p

1
h (t) (�1)dt (A34)

=

Z 1

1�p
h(t)dt (A35)

The above sequence you have written should be

µhR(p) =

Z p

0
r(u)du (A36)

=

Z p

0
h(1� u)du�

Z p

0
h(u)du (A37)

= �
Z 1�p

1
h(u)du�

Z p

0
h(u)du (A38)

=

Z 1

1�p
h(u)du�

Z p

0
h(u)du (A39)

Furthermore, we could deduce that

µhR(p) =

Z 1

0
[ (u > 1� p)� (u < p)]h(u)du (A40)
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This expression, upon applying a transformation y = F�1
Y (u), expanding the formula for h,

yields

R(p)⇥ µh =

Z 1

0

Z 1

0
h[ (y > F�1

Y (1� p))]fH,Y (h, y)dhdy (A41)

�
Z 1

0

Z 1

0
h[ (y < F�1

Y (p))]fH,Y (h, y)dhdy (A42)

which yields the estimator of R(p)

R̂(p) =
1

Nh̄

(
NX

i=1

hi[ (yi > F̂�1
Y (1� p))]�

NX

i=1

hi[ (yi 6 F̂�1
Y (p))]

)
(A43)

As for Cs, it is possible to recursively compute estimators of Rs by first plugging the

estimators of R̂ and then by recursively computing (derivation of this result is in section

A2.3)

R̂s(p) =

Z p

0
R̂s�1(u)du, (A44)

and

bRs
(p) =

1

Nh̄

NX

i=1

hi
1

(s� 1)!
ps�2(p+ (s� 1)[F̂Y (yi)� 1])[ (yi > F̂�1

Y (1� p))]

� 1

Nh̄

NX

i=1

hi
(p� F̂Y (yi))s�2

(s� 1)!
[ (yi 6 F̂�1

Y (p))] (A45)

are the resulting estimators.

A2.3 Computation of integrals containing indicator variables involving inverse

of F̂Y

Even though F̂Y is a step function, the following standard result holds: yi 6 F̂�1
Y (p) if

and only if F̂Y (yi) 6 p. In what follows, We will check the formula for the estimator by

induction.
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First set I1(p) =
R p
0 (yi 6 F̂�1

Y (u))du and compute

Z p

0
(yi 6 F̂�1

Y (u))du =

Z p

0
(F̂Y (yi) 6 u)du (A46)

= (p� F̂Y (yi)) (F̂Y (yi) 6 p). (A47)

Then recursively compute

Ik(p) =

Z p

0
Ik�1(u)du (A48)

=

Z p

0

(u� F̂Y (yi))k�1

k!
(F̂Y (yi) 6 u)du (A49)

=
(p� F̂Y (yi))k

(k + 1)!
(F̂Y (yi) 6 p). (A50)

By making the change of variable s = k + 2, the result follows.

In order to compute integrals containing indicator variables involving the (quantile)

inverse of F̂Y , it is important to make a previous argument more explicit. In fact because

F̂Y is non-decreasing {yi : F̂Y (yi) > p} is unbounded from above and because F̂Y is right-

continuous, {yi : F̂Y (yi) > p} is closed to the left, thus it is closed at its infimum. However,

by the definition of the quantile function,

F̂�1
Y (p) = inf

yi
{yi : F̂Y (p) > p}, (A51)

we get the set equality

{yi : F̂Y (yi) > p} = [F̂�1
Y (p),1) (A52)

This set inequality shows that F̂�1
Y (p) 6 yi if and only if p 6 F̂Y (yi). Taking complements

of the set equality in [0,1) yields the equality

{yi : F̂Y (yi) < p} = [0, F̂�1
Y (p))], (A53)

which implies yi < F̂�1
Y (p) if and only if F̂Y (yi) < p.This allows us to compute the following
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integral,

Z p

0
(yi > F̂�1

Y (1� u))du =

Z p

0
(F̂Y (yi) > (1� u))du (A54)

=

Z 1

1�p
(F̂Y (yi) > u)du (A55)

= (F̂Y (yi) > (1� p))(F̂Y (yi)� 1 + p). (A56)

From equation (A57), it is clear that integrating recursively, we should obtain at step k an

integrand of the form

1

k!
pk�1(p+ k[F̂Y (yi)� 1]) (F̂Y (yi) > (1� p)), (A57)

resulting at step k + 1 in an integrand of the form

1

(k + 1)!
pk(p+ (k + 1)[F̂Y (yi)� 1]) (F̂Y (yi) > (1� p)). (A58)

We could verify that by induction. Since we checked for k = 1, what remains to do is to

check for an arbitrary k and see if we get the correct form for k + 1.

Set J1(p) = (yi > F̂�1
Y (1� u))du and recursively compute

Jk(p) =

Z p

0
Jk�1(u)du (A59)

=

Z p

0
(F̂Y (yi) > (1� u))

1

k!
uk�1(u+ k[F̂Y (yi)� 1])du (A60)

= (F̂Y (yi) > (1� p))
1

k!

Z p

0
uk�1(u+ k[F̂Y (yi)� 1])du (A61)

= (F̂Y (yi) > (1� p))
1

k!


pk+1

k + 1
+

pk

k
k[F̂Y (yi)� 1]

�
(A62)

= (F̂Y (yi) > (1� p))
pk

(k + 1)!
[p+ (k + 1)[F̂Y (yi)� 1]] (A63)

By making the change of variable s = k + 2, the result follows.

A3 Bootstrap procedure

As suggest by Linton et al. (2005) and Shechtman et al. (2008), we used a recentered

bootstrap procedure. The bootstrap algorithm for B repetitions is constructed as follows:
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1. Repeat for b = 1, . . . , B

• Draw a sample of size n1 from S1. Compute the nonparametric estimator L̂1b.

• Draw a sample of size n2 from S2. Compute the nonparametric estimator L̂2b.

• Compute L̂12b(p) = L̂1b(p)� L̂2b(p).

• Compute ⌧̂b = supp
q

n
1

n
2

n
1

+n
2

[L̂12b(p)� L̂12(p)].

2. Using the sample ⌧̂1, . . . , ⌧̂B, compute the bootstrap p-value

1

B

BX

b=1

(⌧̂b > ⌧̂).
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