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I Introduction

It is probably fair to say that the Becker-Murphy model of Rational Addiction (RA) is one of the
most influential, and one of the most commonly empirically implemented, frameworks in health
economics. It has been used to estimate demand functions for alcohol, tobacco and addictive
drugs, but also for the demand for coffee (Olekalns and Bardsley (1996)), movies (Sisto and Zanola
(2010)), credit card debt (Shen and Giles (2006)) and attendance at National Football League games
(Spenner, Fenn and Crooker (2010)). Despite its popularity, though, it is probably also fair to say
that there is no consensus about its empirical validity. Melberg (2008) summarizes the results of a
survey of academics who have written about RA by saying:

A majority of the respondents believe the literature is a success story that demonstrates
the power of economic reasoning. At the same time they also believe the empirical
evidence is weak, and they disagree both on the type of evidence that would validate
the theory and the policy implications. Taken together, this points to an interesting gap.
On the one hand most of the respondents claim that the theory has valuable real world
implications. On the other hand they do not believe the theory has received empirical
support.

The RA model is usually estimated using, in part, an expression in the dependent variable along
the lines of

Yi=ap+arY1 +arpYi (1)

where Y is current consumption of the addictive commodity in question, Y;_; is lagged, or past,
consumption, with coefficient a;, and Y;41 is leading, or future consumption, with coefficient a .
Obviously, empirical implementation always includes a range of strictly exogenous variables, usually
current and possibly past and future prices, but the primary focus of empirical implementation is
the segment in equation (1) above, and it is the estimation of this expression with which we shall
be concerned here.

The most commonly tested (but, as we shall see, not the only) empirical prediction of the RA
model is that the coefficients on lead and lag consumption should be positive. This prediction
is typically satisfied, but there seems to be no consensus in the literature as to the magnitude
of the coefficients and whether the model yields testable predictions with regards to the absolute
magnitude'. Further, it is not clear that positive and significant lead and lag coefficients should by
themselves be taken as evidence of RA behavior - see the results of Auld and Grootendorst (2004)
for example?.

There is a second testable RA hypothesis that can be tested using equation (1), and that is

LFor a review of panel data estimates of the RA model and a discussion of the wide range of results present in
the literature see Baltagi (2007) and also Baltagi, B.H. and Geishecker, I. (2006).

2Auld and Grootendorst’s estimation uses aggregate level data. Because the issues which arise when aggregate
data are being used are quite different from those which arise with micro level data, with which we are concerned
here, we discuss the Auld and Grootendorst (2004) results in the appendix.



ar = Bag (2)

where 8 = 1/(1 + p) is the individual’s discount factor, p being the individual’s discount rate.
This prediction (which strictly speaking is exact only under certain assumptions about functional
forms) is tested reasonably often in the RA literature and the results have been described by Baltagi
(2007), as “the fly in the ointment” of the RA model3. It is not uncommon for estimation at the
individual level to yield wildly varying, and often implausible, estimates of 5.

One obvious possible explanation for these results is that estimation of the RA model at the
individual level involves the problems typically tackled in the Dynamic Panel Data (DPD) literature
(see, for example, Arellano (2003)). In an earlier paper, however, we suggested that there might be
a problem estimating RA-type equations even in the absence of DPD-type problems and even (and
perhaps especially) when the theoretical model was in fact correct (Laporte et al. (2016)).

Our argument in that paper rested on the fact that the RA model is a particular case of an inter-
temporal optimization problem (as indeed it was set out by Becker and Murphy (1988))* and that
certain properties of the solution to a theoretically correct inter-temporal optimization problem
might raise particular econometric problems in estimating equations like (1).

In that paper we focused on the general issue of estimating equations of the form of equation (1)
above, while explicitly setting aside equation (2). In this paper we consider the implications of
equation (2) in conjunction with the general econometric issues that arise from the nature of the
solution to an inter-temporal optimization problem.

In the following section we set out the theoretical argument that places the RA model in the optimal
control framework, and which will inform the interpretation of our simulation results. Section ITI
considers the implications of hypotheses which are specific to the RA model, as set out in equation
(2) above and also as set out in what Becker, Grossman and Murphy (1994) referred to as a stability
condition (although it is perhaps better referred to as a uniqueness condition). Section IV uses
Monte Carlo simulation to investigate the issue with which we are dealing here, first tackling the
simulations in pure time series form and then, in Section V, in panel data form. The implications
of the Monte Carlo experiments are discussed in Section VI.

3Baltagi and Grffin (2001) say: “In sum, we are optimistic that the rational-addiction model represents a significant
improvement over models of myopic behavior. However, before it can be widely accepted, plausible and statistically
significant estimates of the implied discount rate are needed. Based on BGM and our results, aggregate panel data
do not seem likely to provide sharp estimates of the discount rate. The most promising approach appears to be
microdata as discussed by Chaloupka (1991) but one hopes with samples much longer than T = 3.”

41t is worth noting that, while Becker and Murphy (1988) and Becker Grossman and Murphy (1991) set the
problem up in the form that we use below, in later papers, including Becker, Grossman and Murphy (1994) they put
lagged consumption directly in the individual’s utility function. This difference in formulations may help explain
differences in the explanatory variables included in estimated equations in the literature, in particular whether lead
and lagged prices should be included.



II A Brief Outline of the RA Model as an Optimal Control
Problem

In setting the RA model up as an optimal control problem® we begin by defining the individual’s
lifetime utility function:

T
V= / U(C(), Y (1), A(t))e—""dt (3)
0

where C is consumption of other, non-addictive commodities, Y is consumption of the addictive
commodity and A is accumulated addiction capital which, as we noted above, is open to a number
of interpretations, all of which are consistent with the notion that A yields disutility rather than
utility, so the first and second derivatives of the instantaneous utility function, U, with respect to A
are both negative. Both C and Y yield positive and diminishing marginal utility, and the individual
discounts the future at the subjective rate p. The upper limit of integration, which represents the
end of the individual’s planning horizon - in most health economic applications, this refers to the
end of life - is written T and, in terms of the formal analytics of an optimal control problem, can be
either finite or infinite. It is not unusual for theoreticians to assume for simplicity that T = oo (as
with for example, the infinitely-lived representative individual often found in micro-founded inter-
temporal macroeconomic models). However, the analytical differences between the case where T is
infinite and that where T is finite- the latter obviously being the sensible case to assume in health
economics applications- turns out to be critical to the argument we make in this paper.

Addiction capital accumulates according to the equation of motion:

A=g(Y)-d4 (4)

where A is standard notation for A /dt, the time derivative of A, g(Y) is a damage production
function with g(0) = 0, g’(Y) > 0 and, typically in this application g”’(Y) > 0, and 4, is the rate
of depreciation of addiction capital, representing the rate at which the body can heal itself if the
individual goes cold turkey on consumption of Y. We must also introduce a budget constraint relat-
ing C, the consumption of the non-addictive commodity and Y, the consumption of the addictive
commodity. We can either introduce a lifetime budget constraint, by adding accumulation of finan-
cial assets to the problem, or an instantaneous budget constraint, requiring all income to be spent
on C and Y at each point in time. Since this issue is not key to the point discussed in this paper
we do not go into detail about it: implicitly in what follows we assume an instantaneous budget
constraint.

We do not derive the intermediate steps for the theoretical analysis here - for the details see Ferguson
(2000). We note simply that the application of optimal control techniques yields a pair of differential

5We work with continuous time at this stage so that we can illustrate an individual’s time path using a phase
diagram - the discrete time formulation which is analytically identical but notationally messier, will be used when
we discuss empirical issues.



equations, one in A and one in Y, which incorporate the first order conditions for inter-temporal
utility maximization and which can be used to map out the individual’s lifetime utility maximizing
trajectories for consumption of T and for addiction capital. These solution equations are typically
used to draw a phase diagram, as in Figure 1 below:

Figure 1: Individual’s Phase Diagram for Rational Addiction Model

In Figure 1, Y, the consumption of the addictive commodity is plotted on the vertical axis and
A, the accumulated addiction capital, is plotted on the horizontal. A phase diagram is a dynamic
representation of the model, so we draw on it trajectories which show how Y and A evolve over
time. The lines marked A = 0 and Y = 0 are called the stationary loci for the diagram. They
are combinations of points along which the dynamics of the model mean that there is no intrinsic
tendency for A or Y respectively to change. From equation (4), for example, A = 0 when g(Y)-¢
A = 0. Thinking of A as a capital good, with § as its depreciation rate, this says that there will be
no intrinsic tendency for A to change if the amount of current Y yields a g(A) value just sufficient
to balance the depreciation of the existing A. For different values of A we need different values of Y,
and these pairings are marked out along the A=0 locus, whose shape will depend on the shape of
the production function g(Y). We have drawn it as linear for expositional simplicity. The stationary
locus for Y can be interpreted in a similar manner (see Ferguson (2000)). The intersection (E) of
the two stationary loci is the equilibrium point for the system, the point at which neither Y nor A
has any intrinsic tendency to change. The phase diagram shows the dynamics of the system when



it is not at the equilibrium, and the stationary loci can be thought of as dividing the (Y, A) space
into quadrants, in each of which Y and A can be shown to be either increasing or decreasing.

In Figure 1 we have drawn a number of trajectories. Two of them, referred to as the stable branches
for the problem, and labeled X; and X5, head directly towards the equilibrium and two more, the
unstable branches, labeled X3 and X4, head directly away. In addition there are two other tra-
jectories, labeled Z; and Zs, each of which is initially heading towards the equilibrium, essentially
tracking the nearest stable branch, but eventually curving away from it, tracking the nearest un-
stable branch and, it can be shown that in the long run it will asymptote on the relevant unstable
branch. It is convenient to think of these Z trajectories as a form of weighted averages of the stable
and unstable branches, along which initially the stable branch is the dominant influence but where
eventually the unstable branch becomes the dominant influence. The optimizing individual must
pick the best possible lifetime trajectory from the full set open to him (which is much larger than
we have illustrated here) taking account of his initial value of A (usually zero in a RA application)
and the length of his life. This type of phase diagram is referred to as having saddle-point dynamics
and the equilibrium point as being a saddle-point equilibrium.

The issue of length of life is key to what follows. We noted above that it is not uncommon for
theoretical exercises to assume an infinite horizon, for expositional simplicity. In empirical RA
research, however, it clearly makes no sense to assume that our individual is fully rational in every
way with the minor exception that she fully believes that she will live forever. If she is going to be
a rational addict, she has to face up to the finiteness of her life.

In terms of the phase diagram, the difference between infinite and finite horizon is key to the
choice of the optimal trajectory. For most economists, it is instinctive to assume that the optimal
trajectory will be one that converges on the equilibrium - i.e. one of the stable branches. It is
well established in the optimal control literature, however, that the stable branch is the optimal
trajectory only for an infinite horizon problem. For a finite horizon problem the optimal trajectory
will be one of the ones that does not converge, typically one such as Z; and Zs above, which seems
at first to be convergent but which, after sufficient time has elapsed, diverges from the equilibrium.
Thus if we were to plot the individual’s optimal trajectory against time it would look like one of
those in Figure 2 below:
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Figure 2: An Individual’s time trajectories for Y

This highlights the fact that if we wish to test the RA model empirically we must use a functional
form that has the potential to change direction as time passes.

A second empirical issue, common to many problems in health economics, is that while we can
define A, addiction capital, we very seldom have actual measures of it which we can incorporate
into empirical work. This is not such an insurmountable problem as it might at first seem.

It can be shown that, when we set the RA model up in discrete time terms, the solution, which
yields the phase diagram, takes the general form

Y, = Byo+ ByyYi1 + Byadia (5a)
Ay = Bao+ BaaAi—1 + BayYi1 (5b)

This is a pair of interrelated first order difference equations whose coefficients depend on the un-
derlying parameters of the optimization problem, and it is the form we would like to estimate, if
we could observe both A and Y. The fact that we cannot observe A is not fatal to our empirical
work since it can be shown (see Ferguson and Lim (2003) and Jones et al. (2014)) that a pair
of interrelated first order difference equations like (5a & b) can be combined into a single second
order difference equation in either of the two variables: in our case, given the assumption that A is
unobservable, this would be in Y.

Most commonly when this dynamic reduction is done we would write the second order difference
equation (SODE) in backward looking form:



Yi=ao+a1Yim1 + Yo+ Bx X + e (6)

As we noted above, in the RA literature, because of interest in the forward-looking nature of the
optimization problem, it is customary to write, and to estimate

Yi=op+arYi 1 +arYi +8xXe + e (7)

which we shall refer to as a SODE in RA-form. We mentioned above that, for the most part,
the focus of the empirical RA literature is on the issue of whether the coefficients on lead and lag
consumption are positive. The theoretical optimal control framework, though, also raises the issue
of how well the estimated equation tracks a nonlinear lifetime trajectory.

The non-linearity itself is not a fundamental problem, since a SODE, whether in backward looking
or in RA-form, can map out a curved path. A key element in relating equation (7) to the form of
trajectories set out in Figure 2 above is the notion of the solution form to a SODE.

It is shown in the theoretical dynamics literature that the solution to a SODE in either form yields
an equation of the form:

Y(t) = A N] + AL+ Y*(2) (8a)

The terms A\; and Ay are what are referred to as the roots of the SODE, which are constants, and
the t superscript is time, so the solution form (8) writes Y as a function of time. The roots of
the system can be solved from either equation (6) or equation (7). Given the nonlinear form in
which t enters the RHS of (8) it is clear that the values of the roots will be key to the shape of the
time-trajectory of Y. In (8) Y*(t) is the equilibrium of the system, and corresponds to the value
of Y at the intersection of the stationary loci in the phase diagram. Its position depends on the
location of the stationary loci in the phase diagram, which in turn will depend on the exogenous
variables in the problem. If there are exogenous variables, and if their value changes, the value of
Y* will change and the trajectory generated by (8) will be adjusted accordingly. The terms A; and
A, are constants whose values depend on the particular details of the model being analyzed. In
equation (8) they serve as weights on the two roots.

Writing the solution to Y as a function of time as in (8) allows for a focus on the conditions for
convergence to equilibrium. Since the As and the As are constants, derived from the parameters
of the particular problem being analyzed, the behavior of Y over time can be mapped out relative
to Y*. Suppose, for example, that both A\; and Ay are positive fractions. Then as time passes,
regardless of the magnitude of the two A terms, eventually both At terms will converge on zero and
Y (t) will converge on Y*. This is the case of a dynamically stable equilibrium. Similarly if both Ay
and Ay are positive but larger than 1 (negative roots are very rare in economic applications, so we
do not discuss them here), as time passes both A! terms will become extremely large and no matter
how small the A terms might be, Y will tend to diverge from Y*.



The saddle-point equilibrium as set out in Figure 1 above has the property that while both roots
are positive, one of the roots is larger than one and the other smaller than one. The root that is
larger than one (we shall assume that A; is the larger root and A\ the smaller one) we refer to as
the unstable root and the smaller one as the stable root. Clearly, as time passes and t increases, the
unstable root, which is greater than 1, will tend to have more and more influence on the behavior
of Y(t) while the stable root, which is a positive fraction, will have a diminishing influence. The
terms A; and As in effect pick which possible trajectory on the phase diagram the individual is
on, and hence what the time-trajectory of Y (i.e. the shape of Y(t) plotted against t) looks like.
For example, if the conditions of the problem are such that Al, the weight on the unstable root,
is zero, expression (8) will collapse to the solution form for a stable first order difference equation,
Y (t) = A2\, + Y*(¢). In this case, since Ay is a positive fraction, as t increases, A5 will go to zero
and the actual value of Y will converge, as time passes, on its equilibrium value. In terms of the
phase diagram this is the case where the individual’s optimal trajectory is the stable branch to the
equilibrium. As we have already noted, the results of optimal control theory tell us that this will be
the optimal solution only in the case of an infinite horizon problem. For a finite horizon problem,
the optimal trajectory for an individual will be one along which both roots have non-zero weights.
If Ay is very small relative to Ao, it will be the case that initially the stable root will dominate the
trajectory and the system will seem to be converging to the equilibrium, but eventually t will reach
a value large enough that the unstable root will come to dominate and the time-trajectory of an
individual’s Y will start to swing away from the equilibrium. For t sufficiently large the influence
of the stable root will be swamped by the influence of the unstable root and the individual’s time
trajectory of Y will be very close to that for an unstable FODE: Y () = A; A} + Y*(¢).

As noted above, (8) writes the solution to a SODE strictly as a function of time. The solution
relation must hold at each value of t, so we have

Y(t—1)= AN 4 AN 1Y (1 1) (8b)
and
YV({t+1) = AN+ AN + V(¢ 4+ 1) (8c)

Given that we can solve for the roots of the estimated RA-form SODE (7), the upshot of this is
that, if the RA model is in fact the solution to an individual’s inter-temporal optimization problem,
when we estimate equation (7) and solve for its roots we should find one stable and one unstable
root (i.e., because we are using the difference equation form for our empirical work, one root less
than one and one root greater than one).

In Laporte et al. (2016) we presented Monte Carlo results that suggest that, in the case of a
standard, backward-looking SODE such as (6) above, the fact of saddle-point dynamics might
cause problems for estimation. Thus consider a SODE of the form:

Y, = —1000 + 2.055Y;_1 — 1.05Y;_» 9)



(where for simplicity we have omitted exogenous variables since our focus is on the SODE itself).
This equation has roots 1.10 and 0.952, so it satisfies the saddle-point condition. In Laporte et
al. (2016) the Monte Carlo experiments were conducted with 500 replications on 500 observations,
using recursive regression. Within each experiment the deterministic part of the SODE was held
unchanged and a zero mean NID disturbance term was added. The observations were ordered so
that a time series graph of the data would initially seem to be converging on the equilibrium but
then, as the unstable root came to dominate, turn and diverge from it, as in the case of trajectory
Z1 in Figure 1 above. For this equation we report the means of the Monte Carlo estimates on the
two lag coefficients in Figure 3 below, where the first 20 observations were reserved for initialization
of the recursive estimation.

Figure 3: Means of Monte Catlo Coefficients on two lags of Y, case with Ay
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In Figure 3 we see that through the first part of the data set both the coefficients on the first and
the second lag are well estimated, but after about 175 observations the estimated values suddenly
become wildly variable. We can get a sense of what is going on if we consider the values of the
roots of SODE (9) as derived from the estimated coefficients:
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Figure 4: Means of Roots based on Monte Cartlo estimated coefficients, case
of Aig=1.10
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In Figure 4 we see that the unstable root is well estimated throughout our time series, including in
the convergent region, where the stable root is dominant, but that the stable root is well estimated
only in that first segment - once the time series reaches a certain length, with the critical value
apparently tied to the unstable root’s acquiring a minimum degree of dominance over the dynamics
of the dependent variable, our calculated value for the stable root goes astray. In Laporte et al.
(2016) we suggest that in the first part of the time series data both roots matter in the determination
of the behavior of Y, and that that is sufficient to tie down the value of both as, but that once
the unstable root becomes dominant and the stable root has minimal impact on the behavior of
the dependent variable, the system is essentially underdetermined, in the sense that any pair of «
values will do, so long as they yield the unstable root, but that the stable root is not having enough
of an effect on the time series behavior of Y to be able to tie down both coefficients.

Our interest in this paper is whether a similar effect could be at play in the estimation of RA
models that, despite the forward/backward difference equation form typically estimated, should
display saddle-point dynamics.

Issues arising from the presence of unstable roots have been discussed in the macro-econometrics

11



literature: Nielsen and Reade (2007), for example, discuss how numerical instability arising from the
presence of an unstable root affects the development of critical values for tests for the presence of a
unit root in a variable which also has an unstable root, and Nielsen (2008) discusses how the presence
of an explosive root affects testing models of Yugoslav hyperinflation. In the macroeconomic context,
the presence of an explosive root is typically an aberration - a hyperinflation, or possibly a bubble
in the price of an asset. This focus of the literature on macro-econometric issues presumably arises
from the availability of macro data sets which at least seem to display explosive behaviour. In
microeconomics, if we take the models of inter-temporal optimization seriously, the presence of an
unstable root isn’t a bug, it’s a feature. As the number of individual-level longitudinal data sets
available increases, investigating unstable roots in the context of saddle-point dynamics is likely to
become more of an issue.

IIT The Predictions of the RA Model

We noted above that, while it is common in empirical RA applications to find positive values of the
ar and ay, coefficients, condition (2), that ar = 8 ar, where 3 is the discount factor, is much more
problematic, in the sense that the estimated values of ar and aj, very frequently yield implausible
values of 8. It is worth noting that, as usually set up, the theoretical RA model yields two other
conditions on the coefficients on lead and lag consumption. One is the Becker-Murphy stability
condition:

arpap < 0.25 (].0)

While the other is the condition that the RA model display saddle-point dynamics

ap +ap <1 (11)

We are now in a position to set out all of our hypotheses (which we shall maintain in the design of
our Monte Carlo experiments) in diagrammatic form, in Figure 5 below:

12
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Figure 5: Theoretical restrictions on the RA coefficients

In Figure 5 above the fact that we are looking only at the positive quadrant means that the as
are both positive and the negatively sloped line is oy, + arp = 1, so the condition for saddle-point
dynamics is that the coefficients on lead and lag consumption lie inside that line. The negatively
sloped curve represents the Becker-Murphy stability condition, in that the as must lie inside it.
The curve coincides with the line only when both as = 0.5, so satisfaction of the saddle-point
condition implies satisfaction of the BM condition®. The ray from the origin represents condition
(2): because the discount factor is less than one, the ray is flatter than the 45° line. Thus if all of
the RA hypotheses are true: the values of the coefficients on the lead and lag consumption terms
must lie on the ray from the origin, inside the negatively sloped line.

Condition (2), on the relation between the coefficients, imposes a condition on the roots of the RA
estimating equation. It can be shown that, if condition (2) holds,

Agdip =1/8 (12)

6This is because the Becker-Murphy condition is actually a condition for the roots of the equation to be real - if
it is violated they are complex, meaning that the optimal trajectory displays cyclical behavior, and cyclical behavior
is not consistent with saddle-point dynamics. Violation of the BM condition would be a rejection of the RA model.

13



where the two As are the larger and smaller roots respectively. By the definition of 3, this
gives

/\H)\L:1+p (13)

where, as, above, p is the individual’s subjective discount rate.

This would not, in principle, seem to be too demanding a condition - given p it is not that difficult
to define a rectangular hyperbola in the two roots. It is important to remember, however, that the
saddle-point condition requires that one root be stable - i.e. less than 1 - and the other unstable
- i.e. greater than 1. Thus the unstable root must be larger than 1+p, and the more heavily the
individual discounts the future (i.e. the larger p), the larger the unstable root must be. This relation
between the individuals’ discount rate and Ag is, of course, consistent with the interpretation of
1/Ag as the strength of the forward looking effect in the RA equation: i.e.

1/AH = 8Y;/0Y344 (14)

(see Laporte, Karimova and Ferguson (2010) for the derivation of this result - it is also shown there
that the strength of the backward looking effect is 9Y; /Y11 = Ar)

Clearly this result makes intuitive sense: the larger the rate at which the individual discounts the
future, the smaller we would expect the influence of the future - i.e. the forward looking effect - to
be in his consumption decisions and hence, given the definition of the forward looking effect, the
larger the unstable root.

While we shall consider all three of the conditions on the as in what follows, most of the attention in
the literature has been focused on the discount factor condition. Considering Figure 5 we see that,
for what we would probably regard as reasonable values of 8, (0.95 on annual data, for example)
the ray representing the discount factor condition will tend to lie very close to the 45° line, meaning
that ar and ay will take on very similar values, which may be expected to have implications for
the estimation of 5.

IV  Panel Data Monte Carlo Results

In this section we report results of Monte Carlo estimation of RA type equations. Because the RA
model is typically estimated using panel data (when individual level data are available - much of the
earlier empirical work on RA was done using aggregate level data, which raised its own econometrics
issues distinct from those which we are considering here). To do this we first generate pure time
series data sets of 500 observations, following trajectories like Z; and Zs in Figure 1. Within
each experiment we hold the deterministic SODE unchanged and add a zero mean NID disturbance
term”. Each of our data sets satisfies the RA hypotheses. We assume that each trajectory represents

"There is always a question as to how the disturbance term should be regarded in a model of addictive consumption.
A myopic addict, on experiencing a random upward shock in consumption, might be expected to remain on the

14



a full lifetime of consumption behavior for a rational consumer of an addictive commodity. Because
we never actually observe a full lifetime of data for any individual, we next divide the full lifetime
trajectory into 50 non-overlapping panels, each of 10 observations, each taken to represent a different
individual at different stages along the life course. This means that we are working with a very
artificial age distribution - we leave the question of the effects of different age distributions on the
estimated coefficients for later work. This also means that the individuals in our panel will share the
same intercept, as we have not introduced individual specific effects in our DGP, so every individual
follows the same lifetime trajectory. Again the purpose of this assumption is to allow us to focus on
the econometric implications of saddle-point dynamics, ignoring the other econometric issues that
arise in dynamic panel data estimation. As in our pure time series illustration above we do not
include any exogenous variables other than the constant term. Our individuals are ordered from
youngest to oldest, meaning that the early, youngest, panel entrants are drawn from that part of
the lifetime trajectory in which both roots are operative and the stable root is dominant while the
later individuals are older and are drawn from the portion of the lifetime trajectory whose behavior
is dominated by the unstable root.

Consider first an RA-type equation, with ap = 0.4866 and oy, = 0.5109, and 5 = 0.9524. We chose
this as the first RA illustration because the roots of the RA-type SODE are the same as the roots
of the pure time series illustration above, 1.10 and 0.952. Figure 6 below shows the means of the
Monte Carlo coefficient estimates for the recursive panel estimation of this equation:

permanently higher path - i.e. myopic addicts might display unit root behavior in individual-level consumption data.
Since RA is our maintained assumption for these experiments, we chose to treat the error term as noise around a single
chosen consumption trajectory, assuming that, if the rational addict is temporarily knocked off her trajectory she
corrects back on to it. Since the econometric issue here arises from the characteristic roots of the chosen trajectory,
our fundamental point should not be affected by the variance of the disturbance terms. Experiments with differing
variances, early in our research program, did not indicate sensitivity to the choice of variance.
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Figure 6: Lead and Lag Coefficients, true lead = 0.4866, true lag = 0.5109
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The numbers along the horizontal axis represent individuals in the data set: our 500 observations
have been allocated to 50 individuals who occupy successive, non-overlapping segments of the same
lifetime trajectory. We see that, as in the case of the pure time series estimation with the same
roots, the coefficient estimates drawn from the earlier part of the life course are accurate but that
around the 17th individual, meaning at about the same point along the trajectory as in the time
series case, the coefficient estimates suddenly become extremely variable.
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To see what this means for the RA conditions as set out in Section IIT above, we first consider
Equation (9), apar < 0.25, which we graph in the form aar —0.25, meaning that, if the condition
in equation (9) is satisfied our plotted values should all be negative:
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Figure 7: Lead times Lag minus 0.25, true = -.0014
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Given the « values the plot should be a straight line at -0.0014. While we have some deviation
from this, the values reported in Figure (7) are all negative.
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Next we consider the condition set out in Equation (10): «af + ar < 1, which we plot in Figure 8
below in the form oy, + ap — 1, so again all of the values should be negative:

Figure 8: Lead plus Lag minus 1, true = -0.0024
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Here, even though the condition is satisfied in the DGP, the estimation results are much less well
behaved.

Finally, for this experiment, we plot the values of 8 generated using the means of the recursive
Monte Carlo coefficient estimates:
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Figure 9: Beta = Lead/Lag, true beta =0.9524
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In Figure 9 we see that, as we would expect from the graph of the MC coefficient means, [ is

accurately estimated in the first part of the panel data set, i.e. among the observations where both
roots are influential, but badly estimated later on.

Next we consider the case of a RA-type SODE where aop = 0.4819 and ay = 0.5060, with g =

0.9524, giving roots of 1.20 and 0.875. The means of the Monte Carlo coefficients are shown in
Figure 10 below:
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Figure 10, Lead and lag coefficients; true lead = 0.4819, true lag = 0.506
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Here we see that the general pattern is as in the previous case, but the well-behaved range is smaller,
presumably because the unstable root is larger in this case than in the previous one. Looking at
the condition of the product of the coefficients we have
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Figure 11: Lead times Lag minus 0.25, true = -0.006
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and the sum of the lead and lag coefficients:
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Figure 12: Lead plus lag minus 1, true =-0.121
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and the panel-recursive 8 values for this case are:
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Figure 13: Beta =lead/lag, true =.9524
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Finally, we consider the case where ap = 0.4785 and oy = 0.5024, with 8 = 0.9524, giving roots
of 1.25 and 0.84:
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Figure 14: Lead and Lag Coefficients true lead = 0.4785, true lag =0.5024
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Here the higher unstable root has (presumably) shortened the well-behaved region even further.
For this case we have:
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Figure 15: Lead times Lag minus 0.25, true =-0.0096
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Figure 16: Lead plus Lag minus 1, true =-0.019
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For the discount factor 8 we have:
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Figure 17: Beta, true beta = 0.9524
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Where we see the same general result as before, but with a couple of much more extreme outlier
values for 5.

V Discussion

It is important to keep in mind what we have not been trying to do in this paper. We have
not been trying to test the Rational Addiction model. Rather, we have discussed a Monte Carlo
experiment in which the DGP satisfies the key properties of the theoretical RA model, including the
property, based on the usual results of optimal control theory as applied to models of inter-temporal
optimization in economics, that the solution to such a model should display saddle-point dynamics,
i.e. that its solution equation, writing Y as a function of elapsed time, should contain one stable
and one unstable root. We note that we have not added exogenous variables and that the standard
deviation of the disturbance term is small relative to many of the values in the data set.

Our proposition is that, even when the data set is known to satisfy all of the properties of the
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theoretical RA model, the presence of the unstable root may make it very difficult to estimate
the coefficients accurately, with the result that, looking at the estimated value of 3, the discount
factor, we may be led to reject the RA model even when it is true. Again, we emphasize that
we are not saying that this necessarily explains the “fly in the ointment” which Baltagi(2007)
identified, but rather that it may greatly complicate the problem of testing the RA hypothesis.
Even when the individual is a rational addict, the properties of the data may lead us to reject a
true hypothesis.

We noted above that some of the Monte Carlo DGPs were better suited to finding the RA coefficients
than others, although even in the best of the cases the results went off relatively quickly. The precise
pattern which we observe in practice will, we hypothesize, depend on two factors - how large is the
unstable root and where in our hypothesized lifetime trajectory do the bulk of the individuals in
the panel come from. In this paper we have, as we noted above, chosen an unrealistically uniform
distribution of ages of our individuals. We hypothesize that in practice the estimated coefficients
will be forms of weighted averages, with the weights on various parts of the trajectory depending
on how many of the individuals in the particular sample happen to lie at various points along it.
We emphasize here that because all of our individuals lie on the same lifetime trajectory, none of
the problems associated with different fundamental preferences, which are usually associated with
the DPD literature, should affect our results here. Those problems would presumably present an
additional issue to the issue with which we are concerned here.

The hypothesized properties of the RA model have been translated here into their implications
for the roots of the solution to the RA-form SODE. We should note that the particular values of
the roots have not been calibrated to any particular numbers, since we have no solid information
on what values to calibrate them to. We have chosen values within a very small absolute range,
because we have in general tried to use values that seem sensible for RA models. The relative
values of ar and oy have been dictated by the choice of a 8 which does not seem out of place for
a RA model based on annual data and the absolute values have been chosen with an eye to having
one stable and one unstable root, but not making the unstable root dominate too early, so that we
could illustrate the econometric effect in which we are interested, and because we do not observe
extreme instability in consumption behavior in the most commonly studied addictive commodities -
cigarettes and alcohol. For narcotics, of course, the story might be different. Beyond that, however,
our results raise the possibility that even in what appears to be a well-studied case, the presence
of the unstable root may be affecting empirical results.

VI Conclusion

The starting point for this paper was the observation that, while the Becker-Murphy model of
Rational Addiction is widely used in the economics literature on the consumption of addictive
substances, and widely accepted among economists, there is controversy in the literature as to how
strongly the empirical results actually tend to support the theoretical model. In particular, it is
not uncommon for the estimates of 3, the individual’s time discount factor, to seem implausible,
and indeed, for estimates of the value of 8 to range widely across the literature.

In this paper we have not attempted to test the RA model. Rather, our interest has been in the
question of whether the unstable root which theory predicts will be present in the individual’s
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optimal solution trajectory might complicate the estimation of the RA model even when the true
DGP possesses the key characteristics of the RA model. Our Monte Carlo results suggest that
this may well be the case. The results of the experiments presented here are consistent with the
proposition that, the stronger the unstable root the more unreliable are estimates of the coefficients
of an RA-form SODE. This implication is complicated by the fact that the key issue is not just
the magnitude of the unstable root, although that is a powerful factor, but the relative importance
of the stable and unstable roots in characterizing the segment of the lifetime trajectory which an
individual happens to lie on. As we saw in the Monte Carlo results for our best-behaved RA-form
SODE, there will exist a segment of the lifetime trajectory along which it is possible to estimate
the RA-form SODE accurately, and there will exist segments along which it is not. We emphasize
that these segments all lie on the same lifetime trajectory: it is not a matter of different individuals
having different characteristic roots. This effect will be complicated in estimation on real-world
data sets in that, even if everyone in the longitudinal data set did happen to be following exactly
the same lifetime trajectory, we would expect to have clusters of individuals at different stages along
it, so the estimated coefficients would be, in a sense, weighted averages of the types of coefficient
values we have found in our experiments.

We note that there are values of the unstable root for which well-behaved segments do exist.
We also note that, at least in our panel simulations, the unstable root could be recovered with
considerable accuracy, although the same could not be said for the stable root. The unstable root
by itself, however, will not allow for identification of the true values of the coefficients on lead and
lag consumption.

In addition, we have the problem that we do not, at this point, know what constitutes a reasonable
value for A\gy. In our experiments, we simply generated data series that were driven by certain
values of the stable and unstable roots. While the roots are raised to the power t in the solution
form for a SODE, in our experiments we have not defined the length of a period, t: there is no
reason for it to be in years, it could perfectly well be in months. While there must be some form
of internal consistency between the dynamics of a model set out in terms of months and the same
model set out in terms of years, that fact by itself does not tell us what a well-behaved value of
Ag should be in any real-world application. Indeed, the only basis we have for assuming that the
unstable root will be small enough to give us what we have been calling a well-behaved data set is
that we do not seem to observe, in real world applications, the explosive dynamics that would be
associated with a large unstable root.

Our problem, then, appears to be that, when the RA model is the true DGP, the presence of the
unstable root makes it extremely difficult to estimate the true coefficients and to extract the true
value of the discount factor. We do not assert that our results must absolutely be the explanation
for the wide range of estimated values, especially for 8, which have come out of the empirical RA
literature. It is, after all, always possible that the RA hypothesis is simply wrong®. We do, however,
suggest that they may be part of the explanation for the variability of the estimates, that they may
well represent a serious complicating factor in empirical RA research, and that they merit further
investigation if we are to hope to understand the empirical behavior of the RA model®.

8 A referee has raised the issue of whether the argument made here might also shed light on the exponential versus
quasi-hyperbolic discounting debate. See, for example, Gruber and Koszegi (2001).

9We do not, in this paper, consider the possibility of using pseudo panels constructed from repeated cross section
surveys. In what must be one of the most meticulous papers in the RA literature, in the sense that they consider
all of the theoretical predictions of the theoretical model, including the roots, Pierani and Tiezzi (2011) construct a
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Appendix: Macro versus Micro estimation

In discussing issues in the estimation of the RA model, it is important to note that, while the
theoretical model is one of inter-temporal optimization by the individual, past limitations on the
availability of individual level panel data sets has meant that most empirical estimation has been
done at the aggregate, or macro, level. American studies'® have often used national or state-level
data and studies from other countries have used national level data. Among the few early exceptions
were Chaloupka (1991) that used data from the National Health and Nutrition Examination Survey,
and Grossman, Chaloupka and Sirtalan (1998), and Grossman and Chaloupka (1998) both of which
used data from the Monitoring the Future program. This means that most of the estimates of the
coeflicients on lead and lag consumption, and therefore of the discount factor, which are at the core
of the debate about the empirical validity of the theoretical model, have been based on aggregate
level studies. The usual assumption is that macro level responses can be derived, with suitable
attention to possible distributional effects (differences in coefficients across age groups and between
males and females, for example) from individual level coeflicients. This is true of factors such as
price elasticities - the market level response to a price change should be a weighted average of
individual level responses - but it is not true of the intrinsic dynamics of consumption and therefore
it is not true of the discount factor. Since estimates of the discount factor depend on estimates
of the coefficients on lead and lag consumption (as do presumed tests of rationality in addiction)
and the intrinsic dynamics of individual level consumption do not carry over to the aggregate
level, we cannot rely on aggregate level estimates of the discount factor to tell us about the true
individual-level discount factor.

The reason for this is that the lead and lag consumption terms in the estimated RA equation reflect
the evolution of optimal consumption through the individual’s life course. In terms of the phase
diagram in Figure 1 above, the individual’s optimal lifetime consumption rule has her following a
trajectory like Z1, so that her consumption changes as time passes, even if none of the exogenous
variables of the problem change. (A change in an exogenous variable, such as price, would show
up as a shift of the entire trajectory.) At the aggregate level, however, even if each individual in
society is following a U-shaped trajectory such as Z;, there is no reason for aggregate consumption
to behave the same way. Aggregate consumption, and in particular per capita consumption (the
variable typically used in empirical rational addiction studies) will be a weighted sum of individual
consumption. To see this, assume that every individual in the society follows the same lifetime
consumption path, as in Z; in Figure 1. Individuals of different ages will be at different points
along the trajectory. Aggregate per capita consumption at any point in time will therefore depend
on what proportion of the population are at each point along the trajectory at that point in time.
If the population age distribution is stable, so that the people flow in and out in such a manner
that the proportions at each age remain unchanged over many years, then aggregate per capita

pseudo panel using Italian monthly cross section data on wine consumption from January 1999 to December 2006
and estimate the RA model on it. Their results are consistent with the RA theory. Pseudo panel methods should,
in principle, allow us to track cohorts which are, in the first year of the surveys, at different points along the lifetime
consumption trajectory. While there will be different individuals in the sample each year, and we would be looking
at mean levels of each age cohort’s consumption in each year, the argument would be that, so long as we include
a large enough number of trajectory-shifting factors, including, ideally, measures of distributions as well as means
of those shifters, age cohort average consumption data should allow us to map out the typical lifetime trajectory.
However, since the trajectory being mapped out is in effect an average of trajectories obeying saddle-point dynamics,
the problem which we have been discussing here may well still arise.
10For example, Becker, Grossman and Murphy (1994)
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consumption will remain unchanged over time (so long as none of the exogenous variables change)
even though each individual’s consumption is changing as time passes. Per capita consumption by
a population of rational addicts can remain unchanged over the years, even though each individual
is following a trajectory such as Z1, with consumption (in this case) initially falling and then rising.
At the very least, there would seem to be a case for arguing that any aggregate level RA estimation
should include population age distribution among its explanatory variables.

The question then arises as to why so many aggregate level studies seemed to find support for
rational addiction behavior. Auld and Grootendorst (2004) argue, correctly, in our view, that this
is explained by time series econometrics issues at the aggregate level. They argue that the standard
lead-lag form of estimating equation can be expected to yield spurious results at the aggregate level,
and illustrate their case by estimating RA-type SODEs on Canadian data for milk, eggs, oranges,
apples and cigarettes, using OLS and three different 2SLS methods on each. They find positive,
though not always significant, coeflicients on all of their variables but generally implausible values
of the discount factor. They conclude that, if the RA equations are to be believed, milk is more
addictive than cigarettes.

Auld and Grootendorst’s argument is to some degree weakened by their empirical illustrations.
While it is true that with one exception (one of the 2SLS estimates for oranges) they find positive
coefficients on lead and lag consumption, the roots of their RA-type SODEs (which are not discussed
in their paper but relate to the discussion here) are not consistent with individual level optimization.
For milk, for example, which seems to yield strong RA results, all of the roots are complex with
modulus greater than one, meaning that milk consumption in Canada is apparently characterized
by unstable spirals, a result which does not seem likely to fall out of an inter-temporal optimization
problem!!. Similar issues arise in most of their other examples. The only set of results which do
not yield at least some implausible roots are those for cigarettes. Thus if we go beyond simply
looking at the signs on the lead and lag consumption terms, and look at the implied dynamics, only
cigarettes seem to be consistent with RA theory. On the basis of the A&G empirical examples it
would appear that an important implication of their results is that simply looking at the signs on
the lead and lag coeflicients is not sufficient to test RA.

A&G’s key result about the use of the RA methodology on certain types of macro data is undoubt-
edly correct. Consider the case of a FODE whose true DGP is stable:

Y, = —-1.0540.8Y;_1 + ¢

When we, following A&G, run a Monte Carlo experiment estimating an RA form SODE on this
equation we obtain

Y; = — 0.14 + 0.486Y;_; + 0.485Y;,1 + €
MCSD (0.09) (0.01)  (0.0099)

M Dockner and Feichtinger (1993) propose a model which, they argue, can yield a cyclical consumption pattern as
a solution to the inter-temporal optimization problem, but it seems unlikely that the particular conditions required
by their model are satisfied in the case of milk and even more unlikely that the optimal cycle would be explosive
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which would appear to be a well-behaved RA equation, with roots 1.27 and 0.79 and with discount
factor 0.997.

When we go a step further and estimate a more standard backward looking SODE on the same
data, however, we find

Y, = —0.14 + 0.785Y;_1 + 0.004Y;_5 + ¢
MCSD (0.21) (0.068)  (0.073)

Thus it appears that, when the true DGP is a stable FODE, as would be the case in aggregate where
the dynamics of the dependent variable arose from a lagged adjustment process, if we estimate a
RA-type forward looking SODE we seem to find well-behaved RA behavior but when we estimate
a backward-looking SODE, the second lag falls well short of significance. Other preliminary Monte
Carlo results suggest that when the DGP is in fact second order, both backward-looking and RA-
type SODEs can be fitted to it, which suggests a fairly simple possible check for spurious RA,
although we have not yet done enough work to propose this as a formal test.

Taken in all, then, there is a strong theoretical argument against estimating RA models on aggregate
level data, and our empirical results, consistent with those of A&G, suggest that there are also
serious dynamic econometric issues'? associated with the use of aggregate data'?.

12Note that the econometric issues are quite separate from the theoretical issues: the theoretical issues argue in
favour of modifying the form of the estimating equation if aggregate data is to be used, while the econometric issues
focus on investigating the dynamics implied by the estimates in much more detail than has usually been the case.
13 Just to add to the complications, when working with aggregate data, unit root problems may arise.
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