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Centre canadien en économie de la santé
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Abstract

In panel stochastic frontier models, the Fixed Effects (FE) approach produces biased technical
efficiency scores when time-invariant variables are important in the production process, and the
Random Effects (RE) approach imposes distributional assumptions about the inefficiency. More-
over, technical efficiency scores obtained from these models are biased when the sample contains a
large number of firms near the efficient frontier. We propose the use of quantile regression (QR)
with a Correlated Random Effects (CRE) specification as an alternative to these approaches. Us-
ing Monte Carlo simulations, we show that CRE QR can overcome the limitations of FE and RE
stochastic frontier models.
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1 Introduction

In a panel context, efficiency2 analysis is usually performed using stochastic frontier models, which
are estimated using fixed effects (FE) and random effects (RE) (Greene, 2005). The FE approach
is generally seen as attractive as it does not make distributional assumptions on the inefficiency
and allows the explanatory variables to be correlated with the inefficiency term (Jacobs et al,
2006). However, the FE estimator does not allow for the inclusion of time-invariant variables in
the analysis, which implies that all between-firm characteristics (observed and unobserved) goes
into the same term that is used to calculate inefficiency (Greene, 2005). This can lead to biased
technical efficiency scores if these firm-level characteristics significantly affect the production process
(Feng and Horrace, 2007). The RE model allows for the inclusion of time-invariant variables but
imposes distributional assumptions with regard to the inefficiency and assumes independence of
the explanatory variables and the inefficiency term (Jacobs et al, 2006). Both methods assume
one firm is 100% efficient, with the other firms ranked in relation to this firm (Kumbhakar and
Lovell 2000). This ranking mechanism has been shown to produce biased estimates of the technical
efficiency scores when the sample consists of a large number of efficient firms (Feng and Horrace,
2012).

A possible alternative to panel stochastic frontier models is the semi-parametric Quantile regression
(QR) approach. Using Monte Carlo simulations, Liu et al. (2008) showed that QR outperformed
the Stochastic Frontier Analysis (SFA) and Data Envelopment Analysis (DEA)3 approaches in the
calculation of technical efficiency scores when the sample consisted of a large number of efficient
firms. This analysis was performed using simulated cross-sectional data.

The use of QR for panel data has been complicated by the issue of “unobserved heterogeneity”, or
unobserved firm-level characteristics that are not adequately controlled for by the model. In the
context of efficiency analysis, this would represent inefficiency (assuming all other factors in the pro-
duction process are controlled for in the model). Although QR has been used for efficiency analysis
using panel data (see Knox et al (2007) and Koutsomanoli-Filippaki et al. (2013)), these studies
do not address potential correlation of the explanatory variables and the inefficiency term

This paper discusses the use of panel QR as an alternative to panel stochastic frontier models.
The estimator we propose, which is based on the “correlated random effects” (CRE) specification
presented in Bache, Dahl, and Kristensen (2013), does not make assumptions about the distribution
of inefficiency, allows for the inclusion of time-invariant variables, and produces unbiased estimates
of the slope parameters when the time-varying variables are correlated with the inefficiency term.
Using Monte Carlo simulations, we show that this specification for panel QR at the 80th, 85th, and
90th percentiles outperforms the FE and RE estimators, regardless of the number of efficient firms
in the sample. To the best of our knowledge, our study is the first to compare the performance of
SFA (FE & RE) and QR in a panel context using simulated data. The results of the simulations
suggest that panel CRE QR may be used as an alternative to stochastic frontier models in applied
work where the true distribution of inefficiency is never known.

This paper is organized as follows. Section 2 presents a review of stochastic frontier models for

2In this paper, we deal with the concept of technical efficiency. A firm is said to be technically efficient if
conditional on its inputs, its output mix lies on the production possibility frontier (Liu et al, 2008).

3DEA is a non-parametric approach to calculating technical efficiency scores (Jacobs et al, 2006). We do not
explore this estimator in this paper.
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panel data. Section 3 provides an overview of the use of QR for efficiency analysis using panel data.
Section 4 describes the Monte Carlo methods used in this study. Section 5 presents the results of
the Monte Carlo simulations. Section 6 applies SFA and CRE QR to a real-world dataset consisting
of Indonesian Rice Farmers. Section 7 concludes.

2 Stochastic Frontier Analysis Using Panel Data

The Stochastic Frontier Model for panel data can be written as

yit = α+ x
′

itβ + z
′

iγ − µi + vit, i = 1, ..., N, t = 1, ..., T (1)

where x
′

it is a vector of time-varying variables, z
′

i is a vector of time-invariant variables, µ ≥ 0 is the
time-invariant, technical inefficiency term, and vit is the usual stochastic error term, distributed
i.i.d (0, σv2it).

Broadly speaking, there are two main goals in estimating SFA models such as (1): i) consistent
estimates of the slope parameters (i.e. β and γ) and ii) consistent estimates of the technical efficiency
term, µi.

2.1 Estimation of the slope parameters

FE estimation of (1) can be achieved by including individual intercepts for each firm i in the dataset,
or through the “within” deviation from individual mean transformation (Kumbhakar and Lovell
2000). In either case, time-invariant variables cannot be included in the estimation (and hence
estimates of γ cannot be obtained). Despite this, the FE estimates of the time-varying variables
(βFE) are generally thought to be unbiased estimates of the true population parameters (β) since
they control for all time-invariant factors in the analysis (observed and unobserved).

The alternative to the FE estimator is the RE estimator, which can be estimated via Feasible
Generalized Least Squares (GLS) or Maximum Likelihood (Jacobs et al, 2006). Unlike the FE
estimator, which only uses variation within firms for identification, the RE estimator makes use
of both within and between firm variation (Greene, 2012). Hence, unlike the FE approach, RE
estimation allows for the inclusion of time-invariant variables, and so one is able to obtain estimates
of the effects of these variables on output (i.e γRE). However, the RE estimator assumes that the
explanatory variables are uncorrelated with the time-invariant, inefficiency term. Violation of this
assumption leads to biased estimates of the slope parameters (βRE & γRE).

Mundlak (1978) proposed a modification of the RE framework that allows for correlation of the
time-varying variables and the µi term. In this sense, the unobserved individual characters can
be seen as a projection of the time-means of the time-varying variables plus a disturbance term,
or:

µi = θx̄i + δi (2)
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where x̄i =
1

T

T∑
t=1

xit and δ ∼ N(0, σ2
δ ).

Using Mundlak’s device, it can be shown that the RE estimates of the time-varying variables will
be the same as the FE estimates, or βRE = βFE (see, for example, Hsiao (2003)). Farsi (2005)
proposes the use of Mundlak’s device in the context of efficiency analysis.

To summarize, both the FE and RE (with Mundlak) specifications of the SFA model can be used to
consistently estimate the parameters on the time-varying variables (β) in the analysis. Estimates of
γ can only be obtained through the RE framework, although these estimates may be inconsistent
if the time-invariant variables are correlated with the inefficiency term4.

2.2 Estimation of the technical efficiency scores

Stochastic Frontier models characterize inefficiency as a one-sided probability distribution (Jacobs
et al, 2006). In a cross-sectional setting, stochastic frontier models can only be estimated via
maximum likelihood, and a distribution for the inefficiency needs to be specified (Jacobs et al,
2006). The choices available in most software packages are the half-normal, truncated normal,
exponential, and gamma distributions (Jacobs et al, 2006). These specifications are all unbiased
but inconsistent estimators of the inefficiency since the variance of the estimate remains non-zero,
regardless of the sample size (Greene 1993, Jacobs et al, 2006). Moreover, there is no economic
basis to guide the choice of distribution in applied work (Jacobs et al., 2006), and the results of the
efficiency analysis are sensitive to the distribution chosen (Liu, Laporte, & Ferguson, 2008). Using
panel data, it is possible to relax some of these assumptions.

Using a FE approach, technical inefficiency can be computed using the intercepts via (βMAX - β),
which are then put into the following form5:

te = exp(−µi) (3)

One of the main selling points of the FE estimator is that it does not impose a particular distribution
for the inefficiency term (Jacobs et al, 2006). However, the effects of all time-invariant factors
(observed and unobserved) go to the same term used to calculate the inefficiency. Feng & Horrace
(2007) show that the estimates of the technical efficiency scores using the FE estimator are biased
when time-invariant variables are important inputs in the production process.

Under a RE framework using Feasible GLS, the µi’s can be calculated from the residuals, or:

1

T

T∑
t=1

(yit − α− x
′

itβ − z
′

iγ) (4)

4This would likely need to be solved using an Instrumental Variables (IV) approach (Rabe-Hesketh & Skrondal
(2012)). This issue is not explored in this paper.

5See Kumbhakar and Lovell (2000) for a detailed description.
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After the normalization (µMAX - µ), the µi’s can be put into equation (3) (Kumbhakar and Lovell,
2000). Unlike the FE estimator, the RE approach allows us to directly control for time-invariant
variables, thereby allowing us to distinguish between their effects and inefficiency. However, the RE
GLS approach requires mild distributional assumptions about the inefficiency - specifically, that the
µi are randomly distributed with constant mean and variance (Kumbhakar and Lovell 2000).

The RE approach can also be estimated using Maximum Likelihood (ML), but this requires stronger
assumptions about the shape of the distribution than GLS, with choices generally stemming from
the cross-sectional literature (Jacobs et al, 2006). Moreover, ML estimation may be sensitive to
the iterative and updating processes, so the results may reflect convergence to a local rather than
global maximum (Jacobs et al., 2006). In this paper, we limit our discussion to RE estimated via
GLS.

Thus, if the only source of between-firm variation is technical inefficiency after all inputs are con-
trolled for, we would expect to see similar technical efficiency scores between the FE and RE
approaches. In this case, the FE approach may be preferred6 since one does not need to make dis-
tributional assumptions about the inefficiency. If there are other observable time-invariant factors
that affect the production process (e.g. profit status, rural location, chain affiliation, etc.), then the
RE approach may be preferred , since observable firm characteristics can be directly controlled for,
at the price of making distributional assumptions about the inefficiency term.

In terms of the calculation of the technical efficiency scores, both methods assume one firm is 100%
efficient, with the remaining firms ranked in relation to this firm (Kumbhakar and Lovell 2000).
As noted above, Feng and Horrace (2012) show that the estimates of technical efficiency obtained
from the FE estimator are biased when the distribution of efficiency is skewed (i.e. when there is a
large number of highly efficient firms). They go on to note that this is likely the case in competitive
markets where inefficient firms are rare. In their paper, they propose forming the frontier relative
to the worst performing firm in the data (as opposed to the best) using a FE approach. However, in
their empirical application, they ignore the bias of the FE estimator when time-invariant variables
are important in the production process. They also don’t explore the implications of the bias in a
RE framework.

3 Quantile Regression for Estimation of Slope Parameters
and Technical Efficiency

QR is a semi-parametric approach, which models conditional quantiles as a function of predictors
(Hao & Naiman, 2007). This is in contrast to traditional estimators, including stochastic frontier
models, which model the conditional mean. In this sense, QR is less restrictive than conditional
mean models as it allows for the possibility that the effect of covariates varies across the quan-
tiles.

QR does not make distributional assumptions about the error term. Similar to the linear model, it
requires that the mean of the disturbances is equal to 0. The number of observations with a positive
or negative residual depends on the quantile estimated. For example, at the 90th percentile, 10% of

6Feng and Horrance (2007) propose an alternative way to calculate technical efficiency in a FE setting with
time-invariant variables in the analysis. We do not explore this here.
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firms are given a positive residual, and 90% of firms are given a negative residual. Hence, in terms
of technical efficiency scores, we would expect QR at the 90th percentile to perform well when the
sample consists of fewer efficient firms.

Liu et al (2008) performed Monte Carlo simulations to investigate the performance of QR in com-
parison to SFA and DEA in a cross-sectional context. They found that QR at the 80th percentile
outperformed SFA and DEA when the sample consisted of a large number of fully-efficiency firms.
QR also did well with fewer efficient firms, but tended to over-estimate the efficiency of the more
efficient firms in the sample. This may suggest that QR can be used as a viable alternative to SFA
FE and RE in a panel context when the sample consists of a large number of efficient firms.

The most natural extension of QR to panel data would be to simply pool the observations together.
Once this is done, one could extend the Liu et al. (2008) definition of inefficiency in a quantile
context as the distance between a firm’s observed and actual levels of output, apply this to each
year, and then average across time (see equation 4), which can then be inserted into equation (3).
This raises several concerns. First, the coefficients on the covariates may be biased if correlated
with the inefficiency term µi. The other issue is the dependence of observations over-time, implying
that a conventional standard error for QR may be inappropriate.

This first issue can be solved for the time-varying variables with a “correlated random effects”
type framework for QR. This was first applied to QR by Abrevaya and Dahl (2008), which was an
extension of the Chamberlain (1982) approach. Bache et al (2013) further extended the approach
to unbalanced panels using the Mundlak (1978) specification. Although called “correlated random
effects”, the approaches do not fully follow the linear version, as no actual random effects are
added to the model. Instead, a blocked pairwise subsampling bootstrap is used to account for the
dependence of observations over time.

In addition to the above, there have been other approaches to panel QR that are closer to a SFA
type approach. Koenker (2004), for example, developed a FE type procedure for QR, but this
approach imposes a penalty factor to shrink the individual effects toward a common intercept.
Although it is possible to set this penalty factor to zero to obtain estimates of the FE, one would
need to restrict their effect to be the same across the quantiles.

RE estimation has also been introduced for panel QR as an alternative to the FE procedure. As its
name suggests, the RE approach involves the estimation of random intercepts for each individual
in a given sample (Geraci and Bottai, 2007; Liu and Bottai, 2009). While this approach takes into
account the dependence of observations over time, independence of the random intercepts and the
explanatory variables is assumed. When these assumptions are violated, estimates produced using
the RE model may be biased. Moreover, one would need to make distributional assumptions on
the RE term.

For this paper, we restrict our attention to the Bache et al (2013) specification since it has the
desirable attribute of not making distributional assumptions on the inefficiency and allows for
correlation between the explanatory variables and the inefficiency term.
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4 Methods

In this paper, we compare the performance of SFA-FE, SFA-RE, and QR at the 80th, 85th, and 90th
percentiles in the estimation of technical efficiency using Monte Carlo simulations. We generate
output from a Cobb-Douglas production function with multiple inputs, which takes the form:

yit = β0x
β1

1itx
β2

2itx
β3

3itx
β4

4ite
γzie−µievit (5)

where i=1,...,n, n is the number of firms, t=1,...t, t is the number of time periods.

The technical efficiency term µi is initially generated from the half-normal distribution (exponential
later on). The error term vit is generated from the normal distribution (vit ∼ i.i.d (0, 0.01)). Inputs
are generated from the uniform distribution. We also generate a time-invariant dummy variable zi,
which in the context of efficiency measurement could represent a firm characteristic that significantly
affects the production process (i.e. profit status, rural location, chain affiliation, etc.). Following
Liu et al (2008) we choose values of the coefficients on the inputs so the production function exhibits
decreasing returns to scale. Summary statistics for the starting values of the Monte Carlo data are
presented in Table 1.

[Table 1 here]

In our simulations, the same technical efficiency term is used throughout each of the Monte Carlo
replications. This allows us to see how the estimators perform in calculating the ’true’ technical
efficiency across the Monte Carlo replications.

As the FE estimator requires T → ∞ for consistent estimates of the fixed effects (Greene, 2012),
we chose T=5 with n=100 to avoid the “incidental parameters” problem. Each experiment is run
using 500 replications.

All analysis was performed using R version 3.2.2 “Fire Safety” (R Core Team, 2013). The CRE
QR specifications were estimated using the ‘rqpd’ package (Koenker and Bache, 2011). The SFA
FE & RE specifications were estimated using the ‘plm’ package (Croissant & Millo, 2015).

5 Monte Carlo Results

5.1 Consistency of estimators for slope parameters and technical effi-
ciency scores

In our first set of results, we work under conditions that are most favorable for a panel SFA type
analysis. More specifically, we set γ = 0 so that the only source of between firm variation (other than
the inputs) comes from the technical inefficiency term. We also specify 1 firm to be fully efficient
(µi = 0), and do not allow for correlation between the explanatory variables and the inefficiency
term. As a result, we do not use the Mundlak specification for SFA-RE or QR.

Table 2 presents the estimates of the coefficients across the 500 Monte Carlo replications. We can
see from Table 2 that all 5 estimators produce unbiased estimates of the coefficients.
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Figure 1 presents the average technical efficiency scores for each firm across the 500 replications.
SFA-FE and SFA-RE perform nearly identically - generally underestimating the technical efficiency
scores of all firms in the sample. QR at the 90th percentile generally underestimates the efficiency
of all firms in the sample, but produces a frontier that is closer to the true than SFA (FE and RE).
QR at the 85th and 90th percentiles generally overestimate the efficiency of all firms in the sample,
but QR at the 85th comes quite close to the true. In general, the technical efficiency scores at the
85th and 90th percentiles appear to come closest to the true.

[Table 2 here]

[Figure 1 here]

In our second experiment, we impose correlation between the explanatory variables and the inef-
ficiency term. In this scenario, we do not use the Mundlak specification. This allows us to ex-
plore the consequences of ignoring this correlation on the beta coefficients and technical efficiency
scores.

Table 3 presents the coefficient estimates in this scenario. The FE estimator produces unbiased
estimates of all slope coefficients, which is consistent with our expectations. The RE estimates are
biased, but to a very small degree. We see the most amount of bias in the betas from the pooled
QR.

[Table 3 here]

Figure 2 presents the results of the technical efficiency scores from this experiment. From this, we
can see that the RE estimator still produces estimates of the inefficiency that are on par with the
FE approach. QR performs about the same as the previous experiment.

[Figure 2 here]

In our third experiment, we apply the Mundlak specification to SFA-RE, as well as QR at all
percentiles. The results of the beta coefficients are shown in Table 4. By applying the Mundlak
specification, we are able to produce approximately unbiased estimates of the coefficients in the
SFA-RE and Quantile models.

[Table 4 here]

In terms of the technical efficiency scores, the Mundlak specification appears to help the SFA-GLS
specification in identifying the least efficient firms, but produces downward bias on the technical
efficiency scores of the more efficient firms (see Figure 3). The technical efficiency scores of QR
specifications are relatively unchanged.

[Figure 3 here]

These results seem to suggest that QR at the 85th and 90th percentiles outperform SFA (FE and
RE) under conditions that SFA should strive in (i.e. 1 firm fully efficient, technical efficiency
generated from a distribution with constant mean and variance, no time-invariant inputs in the
production process). The technical efficiency scores of QR are largely unaffected by the correlation
of the inputs and the inefficiency, but the beta coefficients are biased. This, however, is corrected
for by Bache et al.’s (2013) specification.
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5.2 Technical efficiency scores with more than one fully efficient firm

In our second set of experiments, we begin to move away from the unrealistic scenario where only
one firm is fully efficient in the sample. In all experiments hereafter, we impose correlation between
the inefficiency term and the inputs (to more accurately reflect market conditions) so the SFA-
RE and QR specifications are estimated with the Mundlak specification. Since all 5 estimators
allow for correlation between the time-varying variables and the inefficiency term, we do not report
coefficients for the next sets of results (since they are all unbiased).

In our first set of results, we specify 15 firms to be fully efficient in the sample. The results are
shown in Figure 4. We can see from this figure that both SFA-FE and SFA-RE underestimate the
technical efficiency scores of all firms in the sample. QR at all percentiles accurately identifies the
fully efficient firms in the sample, but QR at the 85th and 90th do a better job of ranking the less
efficient firms than QR at the 80th percentile.

In our next experiment, we increase the total number of fully efficient firms to thirty-four. The
average technical efficiency scores are presented in Figure 5. In this set of results, it appears QR
at the 85th percentile performs the best. QR at all percentiles seems to do well in identifying the
efficient and inefficient firms, but QR at the 85th percentile generally produces technical efficiency
scores that are closest to the true.

[Figure 4 here]

[Figure 5 here]

In our next experiment, we specify forty-nine firms to be fully efficient in the sample (Figure 6).
In this specification, QR generally performs well at all three percentiles. SFA-FE performs almost
as well as QR at the 90th percentile. QR at the 80th percentile outperforms QR at the 85th and
90th percentiles, which makes intuitive sense since the sample consists of a large number of efficient
firms (>20%).

[Figure 6 here]

In our last experiment for this section, we impose sixty-four firms to be fully efficient in the sample.
The results are presented in Figure 7. The results are consistent with expectations - since the
sample consists of a large number of efficient firms, quantile at the 80th percentile outperforms the
other estimators. SFA-FE and QR at the 90th percentile perform almost identically, but QR at the
90th percentile does a better job of ranking the less efficient firms.

Table 5 presents the mean technical efficiency scores of the 4 experiments in this section. We can
see from this table that SFA-RE consistently underestimates the mean technical efficiency score,
regardless of the number of firms in the sample. SFA-FE does quite a bit better - producing
higher mean technical efficiency scores as the number of efficient firms increases. QR at any given
percentile tends to produce higher technical efficiency scores than SFA-RE and SFA-FE. Although
the mean technical efficiency scores tend to be underestimated with a large number of efficient
firms, this is likely due to our definition of technical efficiency (i.e. those on or above the frontier
are considered to be 100% efficient). We can see from Figure 7 that QR at all percentiles generally
produces technical efficiency scores ≥ 0.9 for all fully efficient firms, and scores that are close to the
true for the more inefficient firms. Thus, in terms of identifying the efficient/inefficient firms, QR
seems to do quite well at all percentiles, although SFA-FE is a strong competitor.
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[Figure 7 here]

[Table 5 here]

5.3 Technical efficiency scores with time-invariant variables

In our next set of experiments, we set γ = 1 (coefficient on the time-invariant variable dummy
variable, zi) to introduce an additional source of between firm variation in the production process.
We are able to control for this variable directly using SFA-RE and QR, but are forced to omit it in
the SFA-FE specification (since it is time-invariant).

Figure 8 presents the technical efficiency scores for this scenario with only one firm fully efficient.
We can see from this figure that the technical efficiency scores of SFA-FE are all biased downwards.
SFA-RE performs much better than SFA-FE (since we are able to control for zi directly) but QR
at the 90th percentile seems to perform the best. QR at the 80th percentile overestimates the
efficiency of all firms - but this is to be expected given only firm is fully efficient (again, a situation
that is unlikely to occur in real world data).

The bias of SFA-FE persists as we increase the number of efficient firms from one to thirty-four (see
Figure 9). Performance of QR at 80th, 85th and 90th are roughly the same from the previous case
where the only firm level characteristic was inefficiency. Technical efficiency scores from SFA-RE
are biased downwards for all firms in the sample.

Table 6 presents the mean technical efficiency scores for this section. We can see that both SFA-FE
and SFA-RE underestimate the true average mean, with SFA-RE producing scores that are closer to
the true. QR at all percentiles produces estimates that are generally quite close to the true.

[Figure 8 here]

[Figure 9 here]

[Table 6 here]

5.4 Technical efficiency scores with exponential inefficiency

In our next set of experiments, we compare the estimators using a different distribution for the
inefficiency term - namely the exponential. This distribution clusters most observations near the
efficient frontier with a long tail of observations further away (Jacobs et al., 2006). Hence, we may
expect this type of distribution to appear in real-world applications where the market consists of a
large number of efficient firms.

In the next case, we set γ = 0 (to avoid the bias of the FE estimator) and set 1 firm to be fully
efficient. The results of the simulations are presented in Figure 10. Interestingly, QR at the 80th and
85th percentiles seem to outperform SFA-FE and SFA-RE for every firm in the sample. Estimates
produced by QR at the 80th percentile tend to overestimate the efficiency of all firms - but do so
to a greater extent for highly efficient firms and tend to do a good job of estimating the inefficiency
of inefficient firms in the sample.

[Figure 10 here]
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Increasing the number of fully efficient firms from one to thirty-four (see Figure 11) seems to help the
SFA-FE and QR estimators, but QR at all percentiles seems to dominate the SFA approaches.

Table 7 presents the mean technical efficiency scores of the estimators. QR at all percentiles
generally produces mean technical efficiency scores that are close to the true, although SFA-FE is
close as well (since there are no time-invariant variables in the production process).

[Figure 11]

[Table 7 here]

6 Empirical Application

We now apply SFA-FE, SFA-RE, and CRE QR at the 80th, 85th, and 90th percentiles to the
Indonesian Rice Farmers dataset, which is commonly used in the SFA literature (Feng and Horrace,
2012), starting with Erwidodo (1990). The data consists of 171 farmers from 6 different villages
observed for 6 time periods. Output is the log of kilograms of rice produced. Inputs include seed
(kg), urea (kg), trisodium phosphate (kg), labour (hours) and land (hectares) (Horrace & Schmidt
1996) (all expressed as natural logs). Time-varying dummy variables include pesticide use (DP),
indicators for the type of rice varieties that are planted (DV1 for high yield varieties, DV2 for
mixed varieties, with traditional varieties as the reference category), and an indicator DSS for the
wet seasons (which take place in periods 1, 3, and 5) (Druska & Horrace, 2004). Time-invariant
dummy variables are the 6 village indicators of the farms. A Cobb-Douglas production function
is used for the analysis. All inputs consisted of values greater than zero except for trisodium
phosphate, which contained zero values for some farmers. These zero values were recoded as 1
before the log transformation was applied.

Table 8 presents the results of this analysis for the various estimators examined in this paper. The
SFA-RE and CRE QR specifications were run using the Mundlak specification. It should be noted
that a Mundlak mean was not included for dss, since the mean of this variable was constant for
all farmers. The SFA-FE and SFA-RE specifications produce identical estimates on the coefficients
of the time-varying variables, but we are able to include the time-invariant region dummies in the
SFA-RE specification. The mean technical efficiency score for SFA-FE is likely biased downwards
without these indicators, which appears to be the case, since mean technical efficiency is higher in
the SFA-RE specification.

[Table 8 here]

Similar to the SFA-RE specification, QR allows us to include the time-invariant region dummies
in the regression. In terms of the inputs, there appears to be a non-uniform effect across output
distribution, as the estimated elasticities appear to vary across the quantiles.

In terms of the technical efficiency scores, the mean efficiency at the 80th, 85th, and 90th percentiles,
consistent with our simulation results are all higher than the SFA-FE and SFA-RE estimates.
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7 Conclusions

In this paper, we investigate the performance of QR for the estimation of slope parameters and
technical efficiency scores using panel data. We show that QR with a Mundlak (1978) specification
(suggested by Bache et al (2013)) produces unbiased estimates of the slope parameters when the
explanatory variables are correlated with the inefficiency term. We also show that QR may be
preferred to traditional stochastic frontier approaches since it does not impose distributional as-
sumptions with regard to the inefficiency term, allows for the inclusion of time-invariant variables,
and performs well regardless of the number of efficient firms.

QR may therefore be another tool in the applied analyst’s toolbox for assessing the efficiency of
firms in a particular sector. If it is believed that the market consists of a large number of efficient
firms, then QR at the 80th percentile may be preferred. That being said, as the true distribution
of efficient firms is never known, it may be advisable to estimate technical efficiency scores based
on frontiers estimated at the 80th, 85th and 90th percentiles in applied work.
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Tables

Table 1: DGP Data Description

Mean Std. dev. Min Max

X1 3.344 1.154 1.1686 5.5687
X2 8.8001 3.7701 2.1443 15.2567
X3 8.3092 4.1012 1.242 15.3405
X4 433.9715 170.0607 145.53 745.5886
Z 0.58 0.4941 0 1
µi (half-normal) 0.3235 0.209 0 0.9376
µi (exponential) 0.1919 0.1880 0 1.0361
True values β0 = 50, β1 = 0.2, β2 = 0.1, β3 = 0.08, β4 = 0.15, β5 = 1

Table 2: Coefficient Estimates - One Firm Fully Efficient, Explanatory Variables Uncorrelated with
Inefficiency Term

SFA - GLS SFA - FE QR 80th QR 85th QR 90th
Coefficient β SD β β SD β β SD β β SD β β SD β

β0 3.655 0.071 NA NA 3.873 0.143 3.894 0.142 3.922 0.157
β1 (0.20) 0.2 0.011 0.2 0.011 0.2 0.021 0.201 0.022 0.201 0.023
β2 (0.1) 0.1 0.01 0.1 0.01 0.099 0.018 0.1 0.018 0.1 0.019
β3 (0.08) 0.08 0.008 0.08 0.008 0.08 0.015 0.08 0.015 0.08 0.016
β4 (0.15) 0.15 0.011 0.15 0.011 0.149 0.022 0.15 0.022 0.151 0.024
Mean TE (0.793) 0.744 0.744 0.828 0.809 0.782

Table 3: Coefficient Estimates - One Firm Fully Efficient, Explanatory Variables Correlated with
Inefficiency Term

SFA - GLS SFA - FE QR 80th QR 85th QR 90th
Coefficient β SD β β SD β β SD β β SD β β SD β

β0 3.665 0.072 NA NA 3.943 0.145 3.956 0.148 3.978 0.16
β1 (0.20) 0.196 0.012 0.2 0.012 0.166 0.021 0.169 0.023 0.174 0.024
β2 (0.1) 0.099 0.01 0.1 0.01 0.091 0.018 0.092 0.018 0.093 0.019
β3 (0.08) 0.079 0.008 0.08 0.008 0.073 0.015 0.073 0.016 0.075 0.016
β4 (0.15) 0.15 0.011 0.15 0.011 0.148 0.022 0.15 0.023 0.15 0.025
Mean TE (0.793) 0.744 0.743 0.83 0.81 0.783

15



Table 4: Coefficient Estimates - One Firm Fully Efficient, Explanatory Variables Correlated with
Inefficiency Term, Mundlak Specification

SFA - GLS SFA - FE QR 80th QR 85th QR 90th
Coefficient β SD β β SD β β SD β β SD β β SD β

β0 4.601 0.841 NA NA 4.241 0.522 4.222 0.511 4.208 0.522
β1 (0.20) 0.2 0.012 0.2 0.012 0.202 0.02 0.202 0.022 0.202 0.026
β2 (0.1) 0.1 0.01 0.1 0.01 0.1 0.018 0.099 0.019 0.099 0.02
β3 (0.08) 0.08 0.008 0.08 0.008 0.081 0.015 0.081 0.016 0.082 0.017
β4 (0.15) 0.15 0.011 0.15 0.011 0.149 0.02 0.148 0.022 0.149 0.025
Mean TE (0.793) 0.701 0.743 0.837 0.815 0.787

Table 5: Technical Efficiency Scores as Number of Fully Efficient Firms Increases

Number of TE (True) SFA-RE SFA-FE QR 80th QR 85th QR 90th
Efficient Firms

15 0.796 0.694 0.736 0.834 0.813 0.784
34 0.81 0.683 0.738 0.829 0.803 0.773
49 0.83 0.68 0.75 0.821 0.797 0.77
64 0.859 0.686 0.774 0.824 0.804 0.78

Table 6: Technical Efficiency Scores, 1 Time-Invariant Variable in Production Process

Number of TE (True) SFA-RE SFA-FE QR 80th QR 85th QR 90th
Efficient Firms

1 0.793 0.699 0.516 0.837 0.815 0.788
34 0.81 0.68 0.512 0.83 0.804 0.774

Table 7: Technical Efficiency Scores, Exponential Technical Efficiency

Number of TE (True) SFA-RE SFA-FE QR 80th QR 85th QR 90th
Efficient Firms

1 0.834 0.75 0.781 0.861 0.839 0.812
34 0.847 0.735 0.772 0.854 0.83 0.802
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Table 8: Indonesian Rice Farmers, Coefficient Estimates and Technical Efficiency Scores

Variable SFA-FE SFA-RE QR - 80th QR - 85th QR - 90th

Intercept 5.228*** 6.747*** 6.565*** 5.756***
(0.435) (0.513) (0.566) (0.629)

logseed 0.12*** 0.12*** 0.114** 0.142*** 0.193***
(0.03) (0.03) (0.049) (0.053) (0.064)

logurea 0.089*** 0.089*** 0.121*** 0.117*** 0.104**
(0.021) (0.021) (0.042) (0.043) (0.044)

logphosphate 0.091*** 0.091*** 0.062*** 0.065*** 0.083***
(0.013) (0.013) (0.017) (0.017) (0.018)

logtotlabor 0.243*** 0.243*** 0.202*** 0.182*** 0.212***
(0.032) (0.032) (0.04) (0.047) (0.042)

logarea 0.451*** 0.451*** 0.5*** 0.494*** 0.395***
(0.035) (0.035) (0.064) (0.083) (0.081)

dp 0.034 0.034 0.031 0.037 0.071
(0.032) (0.032) (0.039) (0.048) (0.057)

dss 0.053** 0.053** 0.002 -0.01 -0.005
(0.021) (0.021) (0.024) (0.023) (0.027)

dv1 0.178*** 0.178*** 0.212*** 0.187*** 0.138**
(0.041) (0.041) (0.057) (0.062) (0.067)

dv2 0.174*** 0.174*** 0.074 0.157 0.173*
(0.057) (0.057) (0.101) (0.118) (0.101)

dr1 -0.035 -0.036 -0.072 -0.041
(0.052) (0.06) (0.069) (0.086)

dr2 -0.022 -0.168 -0.254* -0.246*
(0.106) (0.112) (0.142) (0.148)

dr3 0.001 -0.106 -0.205 -0.177
(0.11) (0.122) (0.15) (0.159)

dr4 0.124 0.096 0.024 -0.006
(0.085) (0.082) (0.105) (0.114)

dr5 0.12 0.007 -0.05 0.011
(0.108) (0.122) (0.147) (0.157)

mlogseed 0.042 0.026 0.089 0.005
(0.074) (0.075) (0.082) (0.106)

mlogurea 0.096** 0.006 -0.008 0.005
(0.04) (0.055) (0.061) (0.072)

mlogphosphate -0.068** 0 -0.014 -0.018
(0.03) (0.033) (0.037) (0.039)

mlogtotlabor -0.08 -0.162** -0.126 -0.02
(0.073) (0.073) (0.083) (0.083)

mlogarea 0.058 0.196** 0.113 0.105
(0.079) (0.094) (0.114) (0.135)

mdp -0.082 -0.147* -0.166* -0.219***
(0.071) (0.079) (0.09) (0.082)

mdv1 -0.057 -0.128 -0.172 -0.015
(0.109) (0.125) (0.152) (0.166)

mdv2 -0.149 -0.163 -0.021 -0.061
(0.148) (0.193) (0.194) (0.186)

Mean Technical Efficiency 0.569 0.629 0.769 0.729 0.67

Standard errors in parentheses
***,**, & * refer to significance at the 1%, 5%, and 10% levels, respectively



Figures

Figure 1: Technical Efficiency Scores - One Firm Fully Efficient, Explanatory Variables Uncorrelated
with Inefficiency Term
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Figure 2: Technical Efficiency Scores - One Firm Fully Efficient, Explanatory Variables Correlated
with Inefficiency Term
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Figure 3: Technical Efficiency Scores - One Firm Fully Efficient, Explanatory Variables Correlated
with Inefficiency Term, Mundlak Specification
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Figure 4: Fifteen Firms Fully Efficient
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Figure 5: Thirty-four Firms Fully Efficient
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Figure 6: Forty-Nine Firms Fully Efficient
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Figure 7: Sixty-four Firms Fully Efficient
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Figure 8: One Firm Fully Efficient, 1 Time-Invariant Variable in Production Process
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Figure 9: Thirty-Four Firms Fully Efficient, 1 Time-Invariant Variable in Production Process
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Figure 10: One Firm Fully Efficient, Exponential Inefficiency Term
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Figure 11: Thirty-Four Firms Fully Efficient, Exponential Inefficiency Term

28


	Introduction
	Stochastic Frontier Analysis Using Panel Data
	Estimation of the slope parameters
	Estimation of the technical efficiency scores

	Quantile Regression for Estimation of Slope Parameters and Technical Efficiency
	Methods
	Monte Carlo Results
	Consistency of estimators for slope parameters and technical efficiency scores
	Technical efficiency scores with more than one fully efficient firm
	Technical efficiency scores with time-invariant variables
	Technical efficiency scores with exponential inefficiency

	Empirical Application
	Conclusions

