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Summary

Economic evaluation is often seen as a branch of health economics divorced from mainstream econometric
techniques. Instead, it is perceived as relying on statistical methods for clinical trials. Furthermore, the statistic of
interest in cost-effectiveness analysis, the incremental cost-effectiveness ratio is not amenable to regression-based
methods, hence the traditional reliance on comparing aggregate measures across the arms of a clinical trial. In this
paper, we explore the potential for health economists undertaking cost-effectiveness analysis to exploit the plethora
of established econometric techniques through the use of the net-benefit framework – a recently suggested
reformulation of the cost-effectiveness problem that avoids the reliance on cost-effectiveness ratios and their
associated statistical problems. This allows the formulation of the cost-effectiveness problem within a standard
regression type framework. We provide an example with empirical data to illustrate how a regression type
framework can enhance the net-benefit method. We go on to suggest that practical advantages of the net-benefit
regression approach include being able to use established econometric techniques, adjust for imperfect
randomisation, and identify important subgroups in order to estimate the marginal cost-effectiveness of an
intervention. Copyright # 2002 John Wiley & Sons, Ltd.

Keywords cost-effectiveness analysis using regression; net-benefit framework; cost-effectiveness acceptability curve;
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Introduction

The development of applied health economics has
progressed along two broad paths. The traditional
path sees applied health economics undertaken in
economics departments, employing applied econo-
metrics methods. The second way in which health
economics has developed has been in the economic
evaluation of health care technologies. In these

cases, health economists have undertaken such
evaluations as members of multidisciplinary teams
composed of clinicians, statisticians, epidemiolo-
gists and trialists. They assist in facilitating the
team’s goals of producing information about the
cost-effectiveness of interventions. It is perhaps of
little surprise, therefore, that the development of
economic evaluation alongside clinical trials owes
more to medical statistics than to econometrics,
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the former being characterised by methods sur-
rounding experimental design [1], while the latter
typically involves information obtained from
population surveys [2]. Furthermore, cost-effec-
tiveness analysis has traditionally been concerned
with the estimation of cost-effectiveness ratios –
which are not amenable to regression analysis, the
mainstay of methods employed by applied econ-
ometricians.

In this paper, we explore the potential for health
economists undertaking cost-effectiveness analysis
to exploit the plethora of established econometric
techniques through the use of the net-benefit
framework – a recently suggested reformulation
of the cost-effectiveness problem that avoids
reliance on cost-effectiveness ratios and their
associated statistical problems. This approach also
allows formulation of the cost-effectiveness pro-
blem within a standard regression type framework.
We go on to suggest that this formulation will
encourage researchers to address, in a statistically
robust way, the underlying economics of cost-
effectiveness analysis in the sense of exploring the
importance of covariates on the marginal cost-
effectiveness of an intervention (i.e., interaction
effects between the intervention and important
subgroups). All too often within the context of a
clinical trial, the potential for cost-effectiveness to
vary at the margin is obscured by aggregation
across the arms of the trial.

For many years, the recommendation for
analysts conducting economic evaluation of health
care interventions has been to calculate incremen-
tal cost-effectiveness ratios (ICERs) in order to
summarise the value for money of interventions
[3–5]. More recently, as economic evaluations have
begun to be conducted prospectively alongside
clinical trials, statistical problems associated with
ratio statistics have become apparent in the
interpretation of sampling uncertainty in the
ICER [6–9]. Ambiguity arises with ICERs, since
the value of the ratio itself is not sufficient to give
unequivocal treatment recommendations. For ex-
ample, a negative ICER is consistent with either a
more expensive, less effective treatment or a less
expensive, more effective treatment. A positive
ICER indicates either a more expensive, more
effective treatment or a less expensive, less effective
treatment. While it is trivial to check which
situation has produced the ICER estimate, great
care must be taken when constructing a confidence
interval so that ratios with similar signs but
different interpretations are not grouped together.

The analyst who chooses to bootstrap the ICER’s
confidence interval – a very popular method for
handling uncertainty in stochastic cost-effective-
ness analysis – may choose to reorder the boot-
strap replicates so that ordering reflects the
decision-making implications of the replicates.
Unfortunately, the negative ICERs do not obey
the law of transitivity; unambiguous preference
ordering is not possible in the Southeast and
Northwest quadrants of the cost-effectiveness
plane (the plane is illustrated in Figure 1). Hence,
the construction of confidence intervals for cost-
effectiveness ratios when uncertainty covers more
than one quadrant of the cost-effectiveness (CE)
plane can be problematic.

Recently, a new framework for cost-effective-
ness analysis has been suggested; the net-benefit
framework [10,11] reformulates the cost-effective-
ness problem to generate a net-benefit statistic. Its
linear form has more attractive statistical proper-
ties than the ICER and offers a simpler alternative
for handling uncertainty in stochastic cost-effec-
tiveness analysis. In this paper, we argue that the
linear nature of the net-benefit statistic also allows
the analyst to enhance economic evaluation by
employing regression methods. Practical advan-
tages include being able to identify important
subgroups, adjust for imperfect randomisation
and make use of established econometric techni-
ques. The remainder of this paper is organised
into four parts. The next section provides a
statistical motivation for the use of regression
methods in the net-benefit framework. An empiri-
cal example of the procedure is then provided in

Figure 1. The cost-effectiveness plane
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Section 3. The remaining sections provide discus-
sion and suggest implications of the main results of
this paper.

Statistical considerations in
cost-e¡ectiveness analysis

This section begins by specifying the usual
approach of estimating an ICER in cost-effective-
ness analysis, together with an outline of the
challenges faced when analysing ICERs in a
stochastic framework. The net-benefit framework
is then introduced as a solution to these problems
and a regression approach for net-benefits is
presented in order to demonstrate how cost-
effectiveness can be estimated from a single
regression equation.

The incremental cost-effectiveness ratio

In the most common case, an economic analysis
involves an evaluation of an intervention treat-
ment (T1) compared to a standard care treatment
(T0). Denoting the expected values of cost and
effect for Tk (for k=0 or 1) as mCk and mEk
respectively, the incremental cost-effectiveness
ratio (ICER) comparing T1 to T0 is defined as

ICER ¼
mC1 � mC0

mE1 � mE0
¼

mDC
mDE

ð1Þ

with the implication that the intervention offers
good value for money if the ICER is below some
maximum willingness to pay for health gain. That
is, a decision should be made to implement the
more costly, but more effective treatment inter-
vention if
mDC
mDE

5l ð2Þ

where l is the maximum acceptable willingness
to pay per unit of health gain (or ceiling
ratio).

Of course, it is never possible to know the true
incremental costs and true incremental effects of
an intervention, since it is impossible to simulta-
neously observe the costs and effects of two
different treatments in the same population of
patients [12]. Using sample data for economic data
collected in a clinical trial setting and the analogy
principle [13,14], it is possible to estimate the true,

but unobservable ICER parameter by

IcCECER ¼
%CC1 � %CC0

%EE1 � %EE0

¼
D %CC

D %EE

using the sample mean costs %CCk and sample
mean effects %EEk for the treatment arms (i.e.,
k=0, 1).

The ICER statistic does not give sufficient
information for decision-making without knowl-
edge of the quadrant of the CE plane (or
equivalently, the sign of the numerator or denomi-
nator of the ratio). This is of particular concern
when attempting to calculate confidence limits for
cost-effectiveness ratios where uncertainty covers
more than one quadrant of the CE plane. For
example, bootstrapping methods – widely applied
to the problem of ICER confidence interval
estimation – produce multiple ‘replications’ of
the cost and effect differences. If these methods are
used to calculate ICER estimates without knowl-
edge of where on the CE plane the replicates fall,
negative and positive ICERs from different quad-
rants may be improperly pooled together. The
resulting confidence limit estimates will be mis-
leading to the extent of the conflation of the ICER
replicates from different quadrants but with
similar signs.

Challenges still remain after the bootstrap
replicates have been sorted into their appropriate
quadrants. Some analysts have suggested that the
magnitude of a negative ICER conveys no useful
statistical information [10], and that confidence
intervals for ICERs are meaningful only when
uncertainty is restricted to one of the positive
quadrants of the CE plane. Therefore when ICER
replicates cover more than one quadrant of the
plane, the cost-effectiveness acceptability curve
approach to summarising uncertainty should be
employed [9,15].

The net-benefit framework

Recently, two papers have highlighted what we
call the ‘net-benefit’ approach to handling un-
certainty in cost-effectiveness analysis [10,11]. The
net-benefit framework starts from the premise that
the ICER is only of partial assistance to decision-
makers. Decision-makers must judge whether the
additional effect is worth the additional cost (i.e.
whether the ICER signals a ‘good deal’). This is
formalised in the decision rule of Equation (2).
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The equation can be rearranged to give a measure
of ‘net-benefit’ and an associated decision rule that
the new therapy should be implemented only if the
net-benefits are positive.

Two formulations of net-benefit have been
suggested based on Equation (1). A programme’s
net-monetary-benefit (NMB) is calculated by
subtracting the additional cost from the additional
effect valued in dollars [11]. In contrast, a
programme’s net-health-benefit (NHB) is calcu-
lated by subtracting the additional cost valued in
effect units from the additional effect [10]. The
decision rule in the net-benefit framework is that
the new therapy should be implemented over the
existing treatment if:

NMB ¼ l � mDE � mDC > 0 ð3Þ

or, equivalently, if:

NHB ¼ mDE � mDC=l > 0 ð4Þ

where l is used to denote the maximum willingness
to pay (wtp) for an additional effect.

The same sample analogues are employed to
estimate the mean effect and cost differences in
order to give the estimated net-benefit statistics

N #MMB ¼ l � D %EE � D %CC

N #HHB ¼ D %EE � D %CC=l:

However, in contrast to the ICER, where the
variance is not defined, the variance of net-benefits
estimated from sample mean cost and effects in the
trial arms is simply a linear combination of two
asymptotically normal variables. Therefore it can
be defined as:

varðN #MMBÞ

¼ l2varðD %EEÞ þ varðD %CCÞ � 2l covðD %EE;D %CCÞ

in terms of the monetary net-benefit measure, or:

varðN #HHBÞ

¼ varðD %EEÞ þ
1

l2
varðD %CCÞ �

2

l
covðD %EE;D %CCÞ

for the net health benefit measure. The linear
nature of the NMB and NHB statistics makes
them preferable to work with relative to the ICER.
This is evident when constructing a ð1� aÞ%
confidence interval. For net-benefits, the interval
can be determined in the standard fashion asdNBNB� za=2

ffiffiffiffiffiffiffiffi
s2NB

q
where dNBNB is the estimated net-

benefit measure with variance s2
NB, and za=2 is the

critical value from the standard normal distribu-
tion.

The net-benefit framework’s many advantages
come with a potential drawback; the net-benefit
statistic is a function of l, a value unknown to the
analyst in most cases. Stinnett and Mullahy [10]
consider this attribute a strength as it forces
explicit consideration of the value of l. They
emphasise the importance of sensitivity analysis to
examine different values of l. Furthermore, cost-
effectiveness acceptability curves estimated using
the net-benefit framework and varying values of l
will exactly coincide with those calculated using an
appropriate analysis on the CE plane, since the
underlying cost-effectiveness decision rule is the
same in each case [16]. Nevertheless, the net-
benefit framework provides a much more straight-
forward method of calculating such acceptability
curves.

A net-benefit regression approach

In this section we exploit the linear nature of the
net-benefit statistic to show how net-benefits
can be used to estimate cost-effectiveness within
a regression framework. Without loss of general-
ity, we use net monetary benefits on the cost scale
to illustrate the approach (the results could
equivalently be presented in terms of net health
benefits).

Introductory textbooks emphasise the impor-
tance of taking an incremental approach [4,5]
rather than comparing average cost-effectiveness
ratios. A more recent contribution to the literature
highlighted the fundamental problem of taking
patient-level average ratios: the mean of ratios is
not equal to the ratio of the means [17]. The
consequence is that

%CC1

%EE1

�
%CC0

%EE0

a
%CC1 � %CC0

%EE1 � %EE0

demonstrating that the incremental ratio cannot
be constructed from the difference between the
average cost-effectiveness ratios in each arm of the
trial.

In contrast, the difference in the mean net-
benefit of the experimental treatment and the
mean net-benefit of standard care treatment will
give the overall incremental net-benefit statistic of
Equation (3) [10]. This is straightforward to see
algebraically through simple manipulation of the
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net-benefit expressions

N %MMB1 �N %MMB0 ¼ ðl � %EE1 � %CC1Þ � ðl � %EE0 � %CC0Þ

¼ lð %EE1 � %EE0Þ � ð %CC1 � %CC0Þ

¼ l � D %EE � D %CC

¼ DN %MMB;

for the experimental (subscript 1) and control
(subscript 0) interventions. Therefore the useful-
ness of average net-benefit is not directly in terms
of the average figures themselves, but in the simple
linear relationship between average and incremen-
tal net-benefit.

The linearity of the net-benefit framework can
be employed to estimate cost-effectiveness within a
regression framework by defining a net-benefit
value for each subject. For example,

NMBi ¼ l � Ei � Ci

where Ei and Ci are the observed effect and cost
for subject i. A simple linear model for subject i’s
net-monetary-benefit (NMBi) can be formed in the
following way

NMBi ¼ aþ dti þ ei ðModel 1Þ

where a is an intercept term, t a treatment dummy
taking the value zero for the standard treatment
and the value one for the treatment under
consideration, and e is a stochastic error term.
The regression coefficient d on the treatment
dummy provides the estimate of the incremental
net-benefit, N %MMB1 �N %MMB0, from a standard net-
benefit analysis. Similarly, the standard error of
the coefficient is the same as that calculated from
the standard approach.

The power of this framework is that it is
straightforward to add additional explanatory
variables in order to examine their impact on
cost-effectiveness directly. For example, we can
model the patient-level net-benefit with an alter-
native model

NMBi ¼ aþ
Xp
j¼1

bjxij þ dti þ ei ðModel 2Þ

where there are p covariates x. That is, in this
model the coefficient d on the treatment dummy
gives the incremental net-benefit, and therefore the
cost-effectiveness, of implementing the new treat-
ment controlling for confounding variables. Of
course in the context of an experimental design
like a randomised controlled trial (RCT), the
randomisation process is expected to ensure an

equal balance of both observed and unobserved
confounding factors across the treatment arms.

Correcting for unbalanced allocation in ob-
served covariates that has arisen by chance in
clinical evaluation is only one advantage of
adopting a regression based approach to cost-
effectiveness analysis. All too often in RCT based
cost-effectiveness analyses, the results are simply
aggregated across the arms of the trial to provide
the overall ICER without any consideration of
how the ICER varies between subgroups (at the
margin). Since economics is concerned fundamen-
tally with the margin, the impact of covariates
such as age, sex and disease severity on the cost-
effectiveness of treatment interventions is of
fundamental interest. The net-benefit regression
approach outlined in this section gives an explicit
method for examining marginal issues through the
use of interaction terms.

Consider the model

NMBi¼aþ
Pp

j¼1 bjxij þ dti þ ti
Pp

j¼1 gjxij þ ei

ðModel 3Þ

where the final summation is the interaction
between the treatment dummy and the covariates.
The magnitude and significance of the coefficients
gj on the interaction between the covariates of the
model and the treatment dummy indicate how
cost-effectiveness of treatment is expected to vary
at the margin; large and statistically significant gj’s
point towards important patient subgroups. The
key advantage of this framework is the ability to
use standard regression techniques to examine the
marginal impact of covariates on incremental cost-
effectiveness instead of the usual approach of
aggregating cost and effect differences across arms
of the trial. We now illustrate the general approach
with an applied example.

Example: empirical data from a
randomised trial

Background

The Program in Assertive Community Treatment
(PACT) is one of the most studied models of care
for persons with severe and persistent mental
illnesses (SPMI) [18–21]. Lehman et al. [22] found
that an assertive community treatment (ACT)
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program, relative to usual community services,
reduced psychiatric inpatient days, emergency
room visits, days homeless, and days in jail for
homeless persons with SPMI in Baltimore, Mary-
land (USA). The study’s rationale was that by
providing potentially more expensive but coordi-
nated, community-based care through the ACT
programme, homeless persons with severe mental
illnesses would spend more days in stable commu-
nity housing with savings realized by shifting the
patterns of care from higher cost crisis-oriented
inpatient and emergency services to lower cost,
ongoing ambulatory services. The results suggest
that in the city of Baltimore, ACT was effective in
achieving important outcomes warranting an
examination of the cost-effect trade-off. Lehman
et al. [23] conducted an economic evaluation of the
ACT programme as it was implemented. Their
analysis employed ICERs and provides an empiri-
cal example of the simplifying and unifying nature
of the net-benefit framework.

Methods and data

Direct treatment costs across the one year inter-
vention period were examined from the perspective
of the state mental health authority. Housing
status was chosen as the main effectiveness
measure because of its established validity as a
primary outcome for homeless persons with SPMI
[24]. A day of stable housing was defined as living
in a non-institutionalised setting not intended to
serve the homeless (e.g., independent housing,
living with family, etc.). Subjects randomised to
the comparison usual care condition had access to
services usually available to homeless persons in
the city of Baltimore. Lehman et al. [23] offer more
detail about the study’s methodology.

One hundred forty-eight persons who were
homeless with SPMI were randomised to either
the experimental ACT program or to usual
community services. Subjects were recruited dur-

ing a 19-month period in 1991 and 1992 from
inner-city psychiatric hospitals, primary health
care agencies, shelters, missions and soup kitchens.
Baseline data collection included an assessment of
overall mental health functioning using the Global
Assessment of Functioning (GAF) Scale [25]. For
this paper, we obtained complete data on 73
participants randomly assigned to the ACT
program and 72 randomly assigned to usual care
(comparison) services.

Results using a standard cost-effectiveness

analysis

Baseline group comparisons examined differences
between the two intervention groups on demo-
graphics, diagnoses and histories of homelessness
at baseline [23]. Table 1 presents an abbreviated set
of results. The two groups were comparable with
ACT subjects being slightly older and higher
functioning. In contrast, there was a greater than
expected percentage of African Americans rando-
mised to the comparison condition (p50.01).

Table 2 provides a brief statistical summary of
the cost and effect data and provides a conven-
tional cost-effectiveness analysis of the data by
looking at the incremental costs and effects
between the two groups. ACT subjects had lower
costs and more days of stable housing, suggesting
this was the dominant treatment. Due to the
significant difference in the subjects between
treatment arms with respect to ethnic origin, a
stratified analysis is also reported in Table 2.

Of course, it is important to take into account
the sampling variability of the data when inter-
preting the results of this analysis. Therefore the
results from Table 2 are presented on the cost-
effectiveness plane in Figure 2(a) with uncertainty
represented by elliptical contours covering 5%,
50%, and 95% of the integrated density under
the joint normal assumption. Figure 2(b) presents
an acceptability curve [15], to summarise the

Table 1. Subject characteristics by treatment group

Characteristic ACT subjectsa Comparison subjects

Mean age (SD) 38.96 years (9.43) 36.00 years (8.30)
Mean GAFb score (SD) 37.90 (9.08) 35.32 (9.06)
African American** 62% 83%

aACT indicates assertive community treatment.
bGAF is the global assessment of functioning score.
**p5 0.01.
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uncertainty in the cost-effectiveness of the inter-
vention. The stratified analyses are presented on
the cost-effectiveness plane and as acceptability
curves in Figure 3.

Results using a net-benefit regression approach

An equivalent net-benefit regression approach was
employed by estimating

NMBi ¼ aþ dACTi þ ei;

Model 1 from the previous section with an ACT
treatment dummy variable. The results from this
model are presented in Table 3. Net monetary
benefits were calculated employing l values of $0,
$100, $500, and $1000.

To estimate the behaviour of the t-statistics and
p-values as l ! 1, a regression was run with ‘days
stable housing’, the effectiveness measure, as the
dependent variable. The coefficients from this
‘effect’ regression (and not the NMB regression)
are reported in the final column of Table 3, since
as l ! 1, the NMB coefficient estimates and their

Table 2. Sample statistics from the economic evaluation data

Group variable Mean SD SE

Overall analysis:
Comparison arm (N=72)
Costa 67 400 76 500 9020
Effectb 159 105 12.4

Correlation=�0.43

ACT arm (N=73)
Cost 51 900 61 100 7160
Effect 212 104 12.2

Correlation=�0.39

Incrementsc

Cost difference �15 500 } 11 500
Effect difference 52.7 } 17.4

Correlation=�0.41

Stratified analysis:
Black subjects
Cost difference �5070 } 13 200
Effect difference 35.6 } 21.8

White subjects �62 700 } 33 000
Cost difference 98.1 } 39.0
Effect difference

Incremental net-benefits: Net monetary benefit (SE)

Value of ceiling ratio Overall Black subjects White subjects
l ¼ 0d 15 500 (11 500) 5070 (13 200) 62 700 (33 000)
l ¼ 100 20 800 (12 300) 8630 (14 500) 72 600 (35 400)
l ¼ 500 41 900 (17 000) 22 900 (21 300) 112 000 (46 800)
l ¼ 1000 68 200 (24 500) 40 700 (31 100) 161 000 (63 700)
l ¼ 1e 1ð1Þ 1ð1Þ 1ð1Þ
aAll costs in US dollars, all results to three significant figures.
bAll effects in ‘days of stable housing’.
cDifferences are calculated as ACT value minus comparison value.
dEquivalent to minus the cost difference.
eAs l ! 1; N %MMB ! 1 and seðN %MMBÞ ! 1.

Econometrics and Cost-e¡ectiveness Analysis 421

Copyright # 2002 John Wiley & Sons, Ltd. Health Econ. 11: 415–430 (2002)



standard errors tend to 1. However, as l ! 1,
the t-ratios and p-values from the NMB regression
tend to those for the ‘effect’ regression. Therefore,
the interest in the final column of Table 3 is on the
ratio of the coefficient estimate to the standard
error rather than on the coefficients themselves
since they are on a different scale (days of stable
housing).

Note that the coefficient on the treatment
dummy corresponds to the incremental net-benefit

and that the regression results are exactly equiva-
lent to the standard approach to cost-effectiveness
analysis presented in Table 2. These regression
results can also be used to obtain a cost-effective-
ness acceptability curve by plotting 1� p=2
against l where p is the p-value from the coefficient
on the ACT treatment dummy variable. (The
divisor of two is employed because the accept-
ability curve is equivalent to a one-sided test.)
These values are plotted as points in Figure 2(b),

Figure 2. The cost-effectiveness plane (a) and acceptability curve (b) for the standard cost-effectiveness analysis of the ACT

programme versus standard care. Uncertainty on the CE plane is represented by elliptical contours covering 5%, 50% and 95% of

the joint density of cost and effect differences

Figure 3. The cost-effectiveness plane (a) and acceptability curve (b) for the standard stratified cost-effectiveness analysis of the

ACT programme versus standard care

J. S. Hoch et al.422
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and it is clear that they correspond to points on the
acceptability curve calculated in the standard
fashion [15]. The dashed line in Figure 2(b) shows
where the acceptability curve is tending to as
l ! 1.

Having demonstrated that a simple net-benefit
regression approach is equivalent to a standard
analysis, we consider some richer model specifica-
tions. It is clear from Table 1 that despite the
randomisation of homeless persons with SPMI to
each arm of the study, many more white people
were allocated to the treatment arm. To statisti-
cally address this imbalance, we estimated the cost-
effectiveness of the ACT programme adjusting for
potentially confounding variables such as race, age
and GAF score. This regression equation

NMBi ¼ aþ b1blacki þ b2agei
þ b3gaf i þ dACTi þ ei

corresponds to Model 2 of the previous section.
The estimated coefficients from this model are
presented in Table 4. It is clear from the reported
results of the F-test that the covariate adjustment
has more impact on the measure of effectiveness
than the measure of cost. Consequently, the
adjustment has a greater impact on net-benefit
regressions based on higher l values, which place
greater weight on the effect variable.

Again, in this model, it is the coefficient on the
treatment dummy that gives the results of interest,
and these coefficients can be used to plot the
adjusted results on the CE plane and to generate a
cost-effectiveness acceptability curve. These are

presented in Figure 4, where the unadjusted results
are presented in light grey to aid comparison with
Figure 2.

In Model 2, although coefficients are generated
for the covariates, these are not of direct interest
since they describe the impact on average net-
benefits. Although average net-benefits are useful
as a basis from which to obtain incremental net-
benefits, they are not helpful for decision-making
on their own. This is because they suffer from the
same informational limitations associated with
average cost-effectiveness ratios. From an econom-
ic point of view, the interest in the covariates is on
how they affect the estimate of the intervention’s
incremental net-benefit (i.e. the marginal impact
on incremental cost-effectiveness). To examine
this, we employed a model that interacts the
treatment dummy with the covariates

NMBi ¼ aþ b1blacki þ b2agei þ b3gaf i þ dACTi

þ g1ACTiblacki þ g2ACTiagei

þ g3ACTigaf i þ ei

which corresponds to Model 3 of the previous
section. The results from this regression are
in Table 5. These results show there is a
significant interaction between race and treatment
with black subjects achieving lower net-benefits
from treatment in comparison to their white
counterparts. The results also show that age and
GAF score are potentially important covariates on
the marginal cost-effectiveness of treatment,
although not all of the interaction terms across
the regressions are consistently significant at the

Table 3. Simple net-benefit regression estimates (Model 1)a

N=145
explanatory
variables

NMB with
l¼ $0b [se]
(p-value)

NMB with
l¼ $100 [se]
(p-value)

NMB with
l¼ $500 [se]
(p-value)

NMB with
l¼ $1000 [se]
(p-value)

Effectc

[se]
(p-value)

Constant term �67 400 [8160] �51 500 [8740] 12 200 [12 000] 91 800 [17 400] 159 [12.4]
(50.001) (50.001) (0.313) (50.001) (50.001)

Treatment dummy
ACT 15 500 [11 500] 20 800 [12,300] 41 900 [17 000] 68 200 [24 500] 52.7 [17.4]

(0.179) (0.093) (0.015) (0.006) (0.003)
R-squared (adjusted) 0.006 0.018 0.041 0.045 0.054
F(1, 143) 1.82 2.85 6.04 7.75 9.13
Prob>F 0.179 0.094 0.015 0.006 0.003

aAll monetary measures in US dollars, all results to three significant figures.
bWhen l¼ 0, NMB=�Cost.
cThe coefficients from the Effect regression (and not the NMB regression with l ! 1) are reported since as l ! 1, the p-values for
the NMB coefficient estimates are equivalent to those obtained when ‘days stable housing’ is the dependent variable.
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5% level. To see how these results can be used
consider Figure 5, which shows uncertainty on the
cost-effectiveness plane and cost acceptability

curves for the white versus black subjects at average
age and GAF score. The implications of these
findings are discussed further in the next section.

Table 4. Covariate adjusted net-benefit regression estimates (Model 2)a

N=145
explanatory
variables

NMB with
l¼ $0b [se]
(p-value)

NMB with
l¼ $100 [se]
(p-value)

NMB with
l ¼ $500 [se]
(p-value)

NMB with
l¼ $1000 [se]
(p-value)

Effectc

[se]
(p-value)

Constant term �80 700 [13 900] �63 800 [14 900] 3 890 [20 600] 88 500 [29 500] 169 [20.8]
(50.001) (50.001) (0.850) (0.003) (50.001)

Covariates
Black (dummy) 16 400 [13 500] 15 700 [14 400] 13 100 [19 900] 9 690 [28 500] �6.73 [20.1]

(0.224) (0.276) (0.531) (0.734) (0.739)
Age �86.0 [660] 72 [707] 704 [975] 1 490 [1 400] 1.58 [0.987]

(0.896) (0.919) (0.471) (0.287) (0.112)
GAF 372 [644] 527 [690] 1150 [953] 1 920 [1 370] 1.55 [0.964]

(0.565) (0.446) (0.230) (0.161) (0.110)

Treatment dummy
ACT 18 400 [12 100] 22 600 [13 000] 39 600 [17 900] 60 900 [25 700] 42.51 [18.2]

(0.132) (0.084) (0.029) (0.019) (0.021)

R-squared (adjusted) 50.001 0.005 0.031 0.074 0.071
F(4, 140) 0.96 1.2 2.15 2.81 3.75
Prob > F 0.431 0.316 0.078 0.028 0.006

aAll monetary measures in US dollars, all results to three significant figures.
bWhen l¼ 0, NMB=�Cost.
cThe coefficients from the Effect regression (and not the NMB regression with l ! 1) are reported since as l ! 1, the p-values for
the NMB coefficient estimates are equivalent to those obtained when ‘days stable housing’ is the dependent variable.

Figure 4. The cost-effectiveness plane (a) and acceptability curve (b) for the covariate adjusted cost-effectiveness analysis of the

ACT programme versus standard care. The light grey ellipse and curve in each panel shows the position of the unadjusted estimates

from Figure 2 (only the 95% ellipse is shown for comparison)
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Regression diagnostics

We tested for heteroskedasticity [26] in the five
varieties of the fully interacted model (Model 3).
Results for the test of nonconstant variance were
not uniform. For l = $0 and $100, we rejected the
null hypothesis of homoskedasticity at p50.001.
For l ¼ $500, $1000 and l ! 1 (i.e., ‘days stable
housing’, the effectiveness measure, as the depen-
dent variable), the respective p-values were 0.06,
0.45 and 0.58, and we were unable to reject the null
hypothesis at the 5% level.

Residuals were calculated and analysed. For
l� $1000, we were able to reject joint skewness
and kurtosis tests for normality; however, at
l¼ $1000, the residuals’ kurtosis was not signifi-
cantly different from that of a normally distributed

variable. In the regression where l ! 1, the joint
null hypothesis that the residuals were normally
distributed with zero skewness (p=0.37) and
kurtosis equal to three (p=0.03) could not be
rejected at the 5% level (p=0.06). We also
examined the residuals for patterns by plotting
them against predicted values of the dependent
variable. Visual inspection of the residuals con-
firmed concerns about heteroskedasticy; Figure 6
shows a cone-like pattern evident when l ¼ 0.

We examined potential influential observations
by calculating ‘‘leverage points’’ and DFBETAs
[27]. In general, leverage values greater than twice
the average may require closer inspection; for this
analysis the cutoff value was 2� 8/145� 0.11.
There were 12 subjects with leverage scores
� 0.11. The highest score was 0.21 for a subject

Table 5. Covariate adjusted net-benefit regression estimates with treatment interaction (Model 3)a

N=145
explanatory
variables

NMB with
l¼ $0b [se]d

(p-value)d

NMB with
l¼ $100 [se]d

(p-value)d

NMB with
l¼ $500 [se]
(p-value)

NMB with
l¼ $1000 [se]
(p-value)

Effectc

[se]
(p-value)

Constant term �109 000 [30 100] �95 000 [31 900] �38 900 [28 700] 31 200 [41 400] 140 [29.9]
(50.001) (0.003) (0.178) (0.452) (50.001)

Covariates
Black (dummy) 54 300 [32 700] 57 500 [33 500] 70 400 [31 500] 86 400 [45 400] 32.1 [32.7]

(0.089) (0.089) (0.027) (0.059) (0.329)
Agee 1300 [1220] 1580 [1300] 2620 [1470] 3930 [2120] 2.61 [1.53]

(0.283) (0.227) (0.077) (0.067) (0.091)
GAFe 1260 [940] 1560 [990] 2760 [1350] 4260 [1940] 2.99 [1.40]

(0.181) (0.118) (0.043) (0.030) (0.034)

Treatment dummy
ACT 64 400 [32 300] 73 400 [33 200] 109 000 [34 400] 154 000 [49 700] 89.8 [35.8]

(0.042) (0.029) (0.002) (0.002) (0.013)

Treatment-covariate interactions
ACT �Black �60 200 [34 400] �66 400 [36 500] �91 000 [39 600] �122 000 [57 100] �61.5 [41.2]

(0.082) (0.071) (0.023) (0.035) (0.137)
ACT �Agee �2860 [1560] �3100 [1690] �4050 [1930] �5230 [2780] �2.37 [2.01]

(0.031) (0.068) (0.038) (0.063) (0.240)
ACT �GAF e �2280 [1140] �2600 [1230] �3900 [1870] �5540 [2690] �3.26 [1.94]

(0.049) (0.036) (0.038) (0.042) (0.095)
R-squared (adjusted) 0.069 0.082 0.150 0.112 0.097
F(7, 137) 2.53 2.83 3.46 3.60 3.20
Prob >F 0.018 0.009 0.002 0.001 0.004

aAll monetary measures in US dollars, all results to three significant figures.
bWhen l¼ 0, NMB=�Cost.
cThe coefficients from the Effect regression (and not the NMB regression with l > ?) are reported since as l > ?, the p-values for the
NMB coefficient estimates are equivalent to those obtained when ‘days stable housing’ is the dependent variable.
dHuber–White robust standard errors and p-values corrected for heteroskedasticity.
eThe continuous variables Age and GAF have been centred around their respective means.
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who did not receive the intervention treatment but
had an exceptionally good outcome accompanied
by exceptionally low costs. Using DFBETAs
calculated for both the cost and outcome regres-
sions, we examined subjects’ influence on the
estimate of direct effect of ACT (i.e., d). For the
cost regression (l ¼ 0), there were four subjects
(all control and all black) whose influence was
consistent with shifting the ACT coefficient
� 0.20 deviations downwards (the largest abso-
lute shift was by 0.84); conversely, there were seven
subjects (six control and all black) whose inclusion
was estimated to shift the ACT coefficient � 0.20
deviations upwards (the largest shift was by 0.54).
When DFBETAs were calculated for the case
where l ! 1, four subjects (three control and all
black) had values consistent with shifting the ACT
coefficient � 0.20 deviations downwards (the
largest absolute shift was by 0.46); conversely,
there were three subjects (all control and all black)
whose inclusion was estimated to shift the ACT
coefficient � 0.20 deviations upwards (the largest
shift is by 0.40).

Given the results of the preceding regression
diagnostics, we reanalysed Model 3 using rreg, the
robust regression command in STATA [28]. The
rreg command computes iteratively reweighted
least squares where the weights are based on
absolute residuals; iterations were stopped when
the maximum change in weights dropped below

0.01. While the results are not presented in detail
here, we briefly sketch the main differences
between the results obtained by ordinary least
squares and by robust regression (additional
details are available from the authors). For l
¼ $0 and $100, the coefficient for the ACT
indicator was no longer statistically significant.
For l ¼ $500 and $1000, the coefficients for both
the black indicator variable and its interaction
term with ACT were no longer statistically
significant. On the other hand, the coefficient for
age became statistically significant at the 5% level.
For the outcome regression (i.e., where l ! 1),
there were no substantive changes. In general,
when l� $1000 the robustly estimated coefficients
were smaller in absolute terms for the overall effect
of ACT (i.e., both the direct effect and the
interaction terms were robustly estimated as closer
to zero). When l ! 1, the overall effect of ACT
was larger in absolute terms.

Discussion

The problems associated with statistical estimation
of ICERs are now well documented in the health
economic literature. The net-benefit framework,
originally suggested as a method for handling
uncertainty in economic evaluation, has been

Figure 5. The cost-effectiveness plane (a) and acceptability curve (b) for regression-based cost-effectiveness analysis of the ACT

programme versus standard care by race. The light grey ellipses and curves in each panel shows the position of the unadjusted

estimates from the standard stratified analysis in Figure 3
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extended here to show how the net-benefit statistic
can allow cost-effectiveness to be estimated
directly in a regression framework. Within the
context of simple regression analysis with a single
(dummy) variable for the treatment intervention,
the results are entirely equivalent to the standard
approach to cost-effectiveness analysis. The ad-
vantages of the framework outlined in this paper
come from the ability to move beyond simple
regression modelling to explore the impact of
covariates on marginal cost-effectiveness through
interaction terms.

As recognised in the original economic evalua-
tion of these data [23], the observed difference in

cost and effect between black and white subjects is
noteworthy. The authors suggested one interpreta-
tion of the data is that the pattern of usual care for
homeless persons with SPMI varies according to
race in Baltimore. The researchers found that in
spite of these differences, ACT tended to reduce
excess use of crisis services and to increase the use
of under-utilised ambulatory services for both
groups. The authors concluded that the overall
lower efficiency of ACT for black subjects in
producing stable housing suggested that more
attention should be given in the programme to
differences between races on patterns of home-
lessness and service utilisation. These important

Figure 6. Residual plots for the regressions on -cost (equivalent to NMB when l ¼ 0) and effect (equivalent to NMB when l ! 1)

for each of the three models
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policy findings were discovered by considering race
as a covariate in the economic evaluation.

The importance of the net-benefit regression
approach to cost-effectiveness analysis described
here is that it is possible to estimate the marginal
effect of race on the cost-effectiveness of the
programme while controlling for other covariates.
The graphical presentation in Figure 5 shows the
effect of race to be even more important that the
original simple stratified analysis would suggest,
since controlling for the effect of additional
covariates further separates the estimated joint
densities on the cost-effectiveness plane.

In our empirical example, both the negative
ICER estimates (i.e. the dominance of the ACT
programme compared to standard care) and the
small sample sizes once the analysis was stratified
underscored the potential of the net-benefit frame-
work. There are other situations in which re-
searchers may benefit from the convenience of the
net-benefit regression approach, since it includes
all of the strengths inherent in the standard net-
benefit framework. One example is when the cost-
effectiveness data are characterised by a large
amount of statistical uncertainty, and boot-
strapped replicates of the ICER cover two non-
adjacent quadrants of the CE plane. Adopting the
net-benefit regression approach allows the analyst
to skip the ad hoc solution of reordering the
bootstrap replicates that is sometimes employed
when constructing a confidence interval.

However, the net-benefit regression approach
also shares the limitations associated with the net-
benefit framework. It is an unavoidable fact that
decision-making for cost-effectiveness analysis will
depend on l, the maximum willingness to pay per
unit of effect. Analysts may also be cautious of
normative statements based on l values in light of
the fact that the net-benefit framework has the
same prescriptive limitations as an ordinary cost-
effectiveness analysis. The net-benefit approach
simplifies some of the statistical aspects of
cost-effectiveness analysis, but it is still cost-
effectiveness analysis and subject to its inherent
limitations [10].

An additional challenge inherent in using the
net-benefit regression approach involves handling
violations of the assumptions of classical normal
linear regression. Regression diagnostics can help
to identify outliers. In this paper, we used influence
statistics, such as DFBETAs, to determine which
subjects were driving the results and in what
direction and also employed robust regression.

The data in this paper featured small sample size
(common in many research areas) and non-
normality (non-negative outcome data and skewed
cost data). Because the net-benefit variable is a
weighted combination of the cost and outcome
data, highly skewed cost data may be less of a
problem as l increases and outcomes are valued
more (as was evident in our empirical example).
An important implication is that standard statis-
tical tests relying on normality may not be valid
for small values of l.

The net-benefit regression approach presented
in this paper is largely one of convenience.
Regression methods have not been used widely
to estimate cost-effectiveness analysis in economic
appraisals conducted alongside clinical trials.
However, the theory for bivariate regression
already exists and the knowledgeable analyst will
be able to calculate entirely equivalent analyses
without forming a net-benefit regression directly
[29,30]; however, if decisions are to be made based
on the analysis, the l value must be incorporated.
Nevertheless, the ability to run net-benefit regres-
sions directly on a statistical package is a practical
advantage. Although OLS yields BLUE estimates
of the net-benefit coefficients, it may be possible to
improve upon the efficiency of the OLS estimates
by adopting more sophisticated regression
methods like the minimum distance estimator
framework expressed in Chamberlain [31] or the
generalised method of moments framework de-
scribed in Hansen [32]. Future econometric work
might investigate this promising direction.

Summary

This paper has discussed how the net-benefit
framework can simplify the statistical work
involved in economic evaluation (e.g., avoiding
problems associated with ratio statistics) and also
offer insights (e.g., exploring the importance of
covariates on the marginal cost-effectiveness of an
intervention). While it is true that the simplifying
linearity comes at the cost of conditioning the
analysis on values of l, this may not be such a
crucial limitation especially if the decision-maker
can be assumed to know l. We have suggested
augmenting the standard net-benefit framework by
utilising a regression approach, so that the
potential strengths of both methods may be
incorporated into a unified framework. The
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marriage of econometrics and economic evalua-
tion brings together something old (the regression
framework), something new (the net-benefit
framework), something borrowed (the decision-
maker’s l) to produce something BLUE.
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