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I. Introduction

Manufacturers of prescription drugs are granted a period of patent protection upon the

introduction of a new product. For a period of time, patent protection implies immunity from

market competition thus allowing the manufacturer to act as a monopolist and establish their

brand-name in association to the new chemical substance. The expected monopoly profits

encourage firms to engage in risky investments (e.g. research, testing etc.) that would

possibly lead to the development of new beneficial drugs. After patent expiration and in

order to minimize the monopoly costs to society, manufacturers of generic drugs may enter

the market and brand-name firm eventually faces rival competition from firms that market

virtually the same product. Typical intuition may suggest that prices tend to fall when

markets become more competitive - for example in some limit price models it is optimal for

the firm to charge below the monopoly price when the market opens to competition in order

to deter rival entry. If producers’ price is the only cost to consumers and the products in the

market are close substitutes then, one may expect prices to converge and firms with high

prices to receive a market share of zero. However there is a substantial amount of evidence

suggesting that this is not the case in the prescription drug market.

Grabowski and Vernon (1992) observe that in most cases out of 18 drug products that

had received patent protection in the U.S. market, brand-name firms would continue to

increase their price after patent expiration despite the fact that their generic competitors

entered the market quoting a much lower price for their product. They find that it takes

about two years after patent expiration for the typical product in the sample to lose half of

the market to competition and that the number of competitors in each market is statistically

related with market profitability. Caves et al. find no evidence of limit pricing and estimate

that generic drugs capture roughly 25% of the market when the ratio of generic to branded

price is 0.45. The contradiction between the empirical evidence and economists’ typical

intuition became known as the ‘Generics Competition Paradox’ (GCP) (Scherer, 1993).
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More recent evidence documenting this paradox in the U.S. markets include, e.g., Saha et

al. (2006) and Regan (2007). A similar phenomenon has been observed in the Canadian and

E.U. drug prescription market (e.g. Vandoros and Kanavos (2012), Kanavos et al. (2008)).

Using a two period stackelberg model with several entrants, Frank and Salkever (1992)

show that it may be optimal for the brand-name firm to increase its price as generic drugs

enter the market if rival entry causes demand for the brand-name product to become less

elastic. This result assumes that the demand consists of some consumers who are loyal to the

brand-name firm so that the latter is able to maintain its monopoly power over the former

after patent expiration: only the segment of the demand that consists of consumers who are

cross price sensitive may switch to purchasing the generic drugs after patent expires.

Bhattacharya and Vogt (2002) propose a dynamic theory where they assume a one-

time e§ect of patent expiration on brand-name demand. In their framework, the profit

maximizing firm charges a higher price for its product after patent expiration under the

assumption that rival entry makes demand more elastic which is in contradiction to the

result and the assumption of Frank and Salkever.

Other explanations for the GCP focus on the role of third party institutes such as

insurance coverage. The GCP was documented only in the prescription drug market where

out of pocket expenditure may significantly vary among consumers depending on their type

of insurance. Ferrara and Kong, 2008 show that it may be optimal for the firm to increase

its price after rival entry under some conditions when the demand consists of groups with

di§erent insurance coverage.

In our approach, we assume that rival entry causes brand-name demand to become less

elastic. We expand upon the aforementioned literature by assuming that the e§ect of rival

entry on brand-name demand is continuous in time. During the monopoly period we assume

that consumer loyalty can be represented by a stock variable, its growth depending on the

amount of current advertisment exposure. As in Bhattacharya and Vogt, time is modelled
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continuously and the problem of the firm during both the pre-entry and post-entry phase is

to choose the profit maximizing path for advertisement and price subject to the constraint

that consumer loyalty obeys a given law of motion.

II. Model

A. Assumptions

The firm faces a demand of the form Q(p(t), F (t)) where t, p and F are non-negative

real variables denoting time and product price respectively, F is a measure of the consumers’

loyalty with the product.

We assume that Q is twice continuously di§erentiable in (p, F ), with finite partial deriv-

atives and satisfies (i)− (vi) :

(i). @Q(p,F )
@p

< 0, (ii). @
2Q(p,F )
@p2

= 0, (iii). @Q(p,F )
@F

> 0, (iv). @
2Q(p,F )
@F 2

< 0,

(v). @
2Q(p,F )
@p@F

< 0 and (vi). Q(p, 0) > 0 for some p > 0.

Assumptions (i) and (ii) imply that quantity demanded decreases at a constant rate as

price increases , while assumptions (iii) and (iv) imply that quantity demanded increases at

a decreasing rate as consumer loyalty increases.

Through assumption (v) an increase in F causes quantity demanded to fall more, for a

given increase in price. That is, an increase in F rotates the linear demand curve in (Q, p)

making it more price elastic.

For t 2 [0, T ], which we shall call the first phase, the firm acts as a monopolist. During

this phase familiarity builds up according to the equation of motion:

·
F (t) = g(A(t))− δF (t)
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where the variable A represents the real level of advertising exposure, the parameter

δ 2 (0, 1) is the rate of loyalty depreciation which is assumed to be constant over time, and

g has the standard properties of a production function: gA > 0, gAA < 0 and g(0) = 0. Thus,

the firm can not directly control the level of F (t) but by choosing the level of A(t) it a§ects

the future values of the former.

We assume that the firm can obtain units of A at a constant price per unit v. Since

g is an increasing function an additional unit of A(t) causes
·
F (t) to increase, as a result

future quantity demanded rises (assumption (iii)) and demand becomes more price elastic

(assumption (v)).

Intuitively, we are looking at a population of potential consumers of a fixed size - the

population with the condition that the drug is aimed at. With no advertisement, F = 0

and for some p > 0 where Q > 0 there exist some consumers that choose not to buy the

drug, presumably having done the calculation and decided that the price was not matched

by the marginal health benefit. An increase in advertisement exposure will attract some of

the consumers who are more price sensitive, or have a lower willingness to pay, than the ones

that already consume the product. This increases market size by bringing in a more price

elastic segment of the market and as a result demand overally becomes more elastic.

After time T, which we will refer to as the second phase or the competition phase, there

are no barriers to entry and the law of motion for F becomes:

·
F (t) = g(A(t))− δF (t)− γ(p(t)− p)

The term γ(p(t) − p) represents the rate of entry of rival producers. If the number

of competitors in each market is related with market profitability and if rival competitors

view current product price as a proxy for market profitability then the rate of entry of rival

producers must be a function of current product price (Gaskins, 1970). We assume that

rival entry is a linear function of current product price and define p as the price at which net
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entry is equal to zero with γ being a positive response coe¢cient. Pricing above the limit

price p causes positive rival entry at time t: the increase in the term γ(p(t)−p) has no e§ect

on Q(p(t), F (t)) at time t, but by decreasing
·

F (t) it reduces the dominant firms’ demand

in the future through (iii), ceteris paribus. Moreover, the reduction in F makes demand

more price inelastic through assumption (v). As rival competitors enter the market and F is

reduced it is the more price sensitive individuals who leave, making the demand less elastic

and shifting it towards the origin.

In the second phase F can no longer be interpreted as consumer loyalty - it is the channel

through which advertisement and rival sales a§ect future demand.

The problem of the firm is to choose the path for price and advertisement exposure that

will maximize the present value of its lifetime profits. We further assume that future income

is discounted at a constant rate r and that c, the average total cost of production, is also

constant and that c < p.

B. Necessary Conditions

Formally, the problem can be written as

max
(p(t),A(t))

Z 1

0

[(p(t)− c)Q(p(t), F (t))− vA(t)]e−rtdt

subject to

(1)
·

F (t) = g(A(t))− δF (t)− γ(p(t)− p)

γ = 0 if t 2 [0, T ], otherwise γ > 0
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F (0) = 0

The current value Hamiltonian associated with the above maximization problem can be

expressed as

H(p, F,A, ) = (p− c)Q(p, F )− vA+  [g(A)− γ(p− p)− δF ]

where the time argument is omitted for notational simplicity. In the language of optimal

control, p and A are control variables, F is the state variable and  is the co-state variable.

In economic terms,  is the value associated with a marginal increase in F or the current

value shadow price of F.

The necessary conditions are:

0 =
@H

@p∗
)

(2) 0 = Q(p∗, F ) + p∗Qp(p
∗, F )− cQp(p∗, F )− γ 

0 =
@H

@A∗
)

(3) 0 = −v +  gA(A
∗)
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·
 = r −HF )

(4)
·
 = (r + δ) − (p− c)QF

(5)
·
F = g (A)− γ(p− p)− δF

and must hold for all t, in addition to the transversality condition

(6) e−rt ∗ =
@'

@F ∗

which must be satisfied at t = T,where ' = max
(p(t),A(t))

R1
T
[(p(t)−c)Q(p(t), F (t))−vA(t)]e−rtdt

subject to (1) with γ > 0 and F (T ) given. Condition (6) can be thought as a terminal

condition for phase one and prevents the optimal value of the co-state from changing dis-

continuously at time T.

Condition (2) can be rewritten as

cQp(p
∗, F ) + γ = Q(p∗, F ) + p∗Qp(p

∗, F )

and during the first phase simplifies to

cQp(p
∗, F ) = Q(p∗, F ) + p∗Qp(p

∗, F )

The above conditions implicitly define the optimal price p∗(F, ) as a function of the
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state and co-state variables. In the first period γ = 0 and the optimal price is a function

of the state variable only since the term γ vanishes. The economic intuition behind these

conditions is that the optimal pricing policy p∗(t) must equate marginal cost to marginal

revenue at every instant. During the second period, the term γ reflects the additional costs

that stem from increased competition: pricing above the limit price will result in positive

rival entry which will decrease F in the future. This additional cost to the firm is equal to

the change in F 1 times the shadow price of F.

Similarly condition (3) implicitly defines the optimal amount of advertisement exposure

A∗( ) as a function of the co- state variable and has the same economic interpretation: the

marginal cost of advertisement must be equal to the marginal benefit. In addition, (3)implies

that the current value2 shadow price of F is always positive.

Substituting conditions (2) and (3) into the law of motion for F and  yields a pair of

autonomous di§erential equations:

(7)
·
 = (r + δ) − [p∗(F, )− c]QF (p∗, F )

(8)
·
F = g(A∗( ))− γ[p∗(F, )− p]− δF

From (2), we can calculate

p∗F =
QF + (p− c)QpF

−2Qp

and

p∗ =
γ

2Qp
< 0
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We will assume that QF > −QpF through most of F so that additional units of loyalty

will increase the equilibrium price. Intuitively, a decrease in consumer loyalty during the

first phase causes demand to fall and also become more price inelastic. If the former e§ect

dominates the latter then the firm will decrease its price in order to re capture the demand

that was lost due to a decrease in F.

From (3) we obtain

A∗ = −
gA(A)

 gAA(A)
> 0

As expected the optimal amount of real advertisement exposure increases as F becomes more

valuable.

The stationary locus for  (p∗, F (A∗)) is defined as

(9) 0 = (r + δ) − [p∗(F, )− c]QF (p∗, F )

and it follows by the implicit function theorem that

(10)
d 

dF
| ·
 =0
=
p∗FQF + (p

∗ − c)(QFF +QFp∗p∗F )
(r + δ)− [(p∗ − c)QFp∗ +QF ] p∗ 

In phase 1,the right hand side of the above expression is positive for small values of F

and becomes negative as F increases. Thus,
·
 = 0 is increasing in F for small values of F

and decreasing for large values and the locus must be concave in ( , F ) (see appendix).

In phase 2, the additional term in the denominator [(p∗ − c)QFp∗ −QF ] p∗ is positive and

causes  to change less rapidly along
·
 = 0, as F increases. Assuming that (r+δ)−p∗ QF >

(p∗ − c)QFp∗ the locus is first increasing and then decreasing in F, as in phase 1, otherwise

the first order properties in F are reversed.
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In addition, during phase one, equation (9) requires the value of  to be positive at

F = 0, say e . In phase 2, the value of  is positive and less than e if some loyalty has

accumulated up to time T, since QF will be smaller in magnitude through assumption (iv).

We now turn our attention to the slope of the stationary locus for the state variable:

(11) 0 = g(A∗( ))− γ[p∗(F, )− p]− δF

For this locus we have

(12)
d 

dF
| ·
F=0
=

[γp∗F + δ]

[gAA∗ − γp∗ ]

Therefore this locus is increasing in F during the first period and also during the second,

assuming gAA∗ > γp∗ .

If the value of  at F = 0 is less than e then, by continuity, the two loci intersect at

(F ∗, ∗) where
·
 (F ∗, ∗) and

·
F (F ∗, ∗) are both equal to zero.

In addition

d2 

dF 2
| ·

F=0
=
[
γp∗FF (gAA

∗
 − γp∗ )− (−γp

∗
 F )(γp

∗
F + δ)

]

∗(gAA∗ − γp∗ )
−2

The above expression is negative which means that the stationary locus for F is concave

in (F, ).

Since p = 0 in phase 1 this expression becomes
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d2 

dF 2
=
γp∗FFgAA

∗
 

(gAA∗ )
2
= 0

However, with F on the horizontal axis the formula for the curvature of this locus during

phase one is given by

d2F

d 2
=
gAAA

∗2
 + A

∗
  gA

δ

which is negative since A∗  < 0.

Therefore the stationary locus for F is concave in (F, ) during both phases.

Figure 1 summarizes our findings on the stationary loci. The two loci divide the ( , F )

space into four regions with di§erent dynamics, represented by the phase arrows, that deter-

mine the time path of the system in each region. There is a unique trajectory that reaches

the steady state E where both F and  are not growing over time, represented by the stable

path Ω. That is for all initial pairs ( , F ) 2 Ω the system converges to E . Any other
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trajectory going through ( , F ) /2 Ω eventually diverges from E. After time T the loci shift

but have the same first and second order properties under our assumptions. The dynamics

of the space change accordingly so that the phase two dynamics are the same as in Fig.1 with

respect to the position of the phase two stationary loci. We will now examine the direction

of the shift of the loci after patent expiration.

C. The E§ect of Rival Entry

Totally di§erentiating (9) yields

(13)
d 

dγ
| ·
 =0

=
p∗γ[QFp(p

∗ − c) +QF ]
(r + δ)− [(p∗ − c)QFp +QF ] p∗ 

The above expression is positive if

(r + δ)

p∗ 
−QF < (p∗ − c)QFp < −QF

and negative if

(p∗ − c)QFp > −QF

or

(p∗ − c)QFp >
(r + δ)

p∗ 
−QF

From the first order condition for p we can calculate

dp∗

dγ
=

 

2Qp
< 0
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Recall that we have assumed that QF > −(p − c)QpF through most of F in order for

dp∗

dF
> 0.

Thus, (p∗ − c)QFp > −QF which implies that the post entry stationary locus for  will

be below the respective pre entry stationary locus.

The stationary locus for F is given by 0 = g(A∗( ))− γ[p∗(F, )− p]− δF.

Therefore

d 

dγ
| ·
F=0

=
(p∗ − p) + γp∗γ
gAA∗ − γp∗ 

The denominator is positive so the sign of the above expression will depend on the sign

of the numerator, specifically if (p∗ − p) > −γp∗γ (less than), then the stationary locus for

F post entry is above (below) the respective locus in the pre entry phase. So there are two

cases to consider:

Case 1 : (p∗ − p) > −γp∗γ

This case is depicted in Figure 2 with a phase diagram where we have drawn the sta-

tionary loci for both phases. During phase one, the loci intersect at E1 while during phase

two at E2. Working backwards we are able to sketch the optimal trajectory of the system.

Since the second phase has an infinite horizon, when the system is controlled optimally it

approaches the steady state E2 asymptotically. There is a unique locus of points in ( , F )

along which the system can reach E2, denoted by !2. Thus ( 
∗, F ∗) 2 !2 for all t > T.

The transversality condition for our two phase problem (6) requires  ∗ to be continuous at

time T, that is, the value of  ∗ at the beginning of the second phase is  ∗(T ). For this to

be satisfied, the optimal trajectory must approach a point in !2 for some time up to time

T . Now consider the first phase of the problem. At t = 0 the value of familiarity is zero

so the planner picks a point on the vertical axis of Figure 2. The optimal trajectory must

reach reach a point in !2 at exactly time T without violating the direction of the phase
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arrows. Thus, the set of optimal trajectory candidates are all the trajectories that satisfy

F (0) = 0 and reach a point in !2 at time T. The length of the first phase (i.e. the value of T )

determines the optimal trajectory uniquely. In fig.2, !0 and !00 are both optimal trajectories

in the sense that they satisfy the optimality conditions (1) − (4) given F (0) = 0. If T is

small then the unique optimal trajectory is !0 and if T is large then the unique optimal

trajectory is !00. Any other trajectory fails to reach a point in !2 at time T and satisfy the

transversality condition. As T !1 the optimal trajectory reaches a neighborhood close to

E1 where the growth rate of the state and co-state variables are infinitely small.

Assume that T is such that !00 is the optimal trajectory. Then time can be decomposed

into three di§erent time periods in which the control variables change monotonically:

Time period I : From T = 0 and until the system crosses the phase one stationary locus

for F ,  decreases while F increases over time. During this time period A∗ is falling while p∗

is rising and
·
F ≥ 0, the equality holds for the instant that the trajectory crosses the

·
F = 0
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locus, say t0.

Time period II : After the system crosses the stationary locus for F in phase 1,  

decreases over time but now F is also falling over time. Throughout the duration of this

period, A∗ is falling and p∗ may either fall or rise over time depending on the magnitude of

p∗F relatively to that of p
∗
 .

Time Period III : After the end of Phase 1 the system asymptotically approaches E2

and ( ∗, F ∗) 2 !2 for the whole duration of phase 2. During this period,  is rising and F

is falling. This causes p∗ to fall and A∗ to rise over time.

Therefore in Case one the optimal solution directs price to fall after rival competitors

enter the market. This result is not a new one: it implies that prices tend to fall when

markets become more competitive.

However, when T is small then the optimal trajectory is !0 since it is the unique tra-

jectory that reaches !2 at exactly time T. If this is the case then the system approaches E2

from the left during phase two and the optimal values for price is increasing in this case and

advertisement is falling during the whole duration of the problem.

Case 2 : (p∗ − p) < −γp∗γ

This case is depicted in Figure 3. In this case the optimal path of price is rising post-

patent expiration for all optimal trajectories with finite T . This is a result in contradiction

with many models of competition. If the duration of the first phase is long enough then a

trajectory such as !00 or !000 is optimal. For small values of T trajectories such as !0 are

optimal. Any trajectory that begins above the phase one stable arm, such as !" in fig.3, can

not be optimal since it diverges from E2 as T !1.

In both cases 1 and 2, the optimal price is increasing and F is growing for t 2 [0, t0).

This is also the case for optimal trajectories that begin above the stationary locus for  

such as !000 in figure 3. After time t0 and up to T the system is approaching !2 and A∗ is
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still decreasing while the optimal price is increasing if p∗F > p∗ and decreasing otherwise.

However if the duration of the first phase is short then time period II does not occur because

there is not enough time for the optimal trajectory to cross the stationary locus for F during

the monopoly phase. This implies that at the beginning of the problem, when F = 0 it

is optimal for the firm to start with a high value of real promotional exposure3 and then

gradually reduce it up to time t0. As consumer loyalty accumulates, the firm finds it profitable

to increase its price. The continuous decrease in A∗ causes loyalty to start growing negatively

after t0 and since dA
∗

dt
remains negative throughout t 2 (t0, T ], loyalty will decrease at a faster

rate as time approaches patent expiration. After the time that the growth rate of loyalty

becomes negative4, it is optimal for the firm to charge a higher price for its product if the

total e§ect of  is greater than the total e§ect of F,on p∗. Intuitively, the firm would like to

settle at E1 if the monopoly phase would last forever. As patent expiration approaches and

advertisement is falling, consumer loyalty starts to grow negatively. This has two results,

it reduces quantity demanded and it makes demand more price inelastic. The firm is still
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a monopolist in the market therefore the decrease in the price elasticity of demand would

have a positive e§ect on the optimal price but since the firm now faces imminent rival entry,

any increases in price would result in a higher rate of rival entry after patent expiration and

therefore greater reductions in quantity demanded and own-price elasticity. Depending on

the relative magnitude of our exogenous parameters, the firm may choose to lose some of

the more price sensitive consumers by increasing its price as patent expiration approaches.

When the horizon of post-patent competition is infinite our model predicts that the

optimal price may either rise or fall depending on the magnitude of (p∗ − p) relatively to

−γp∗γ. If the optimal price is close to the limit price and Qp is not too large, then (p∗− p) <

−γ  
2Qp

and the optimal price is increasing post patent expiration for all finite values of T .

On the other hand, if the limit price is too low and Qp is large, then (p∗ − p) > −γ  
2Qp

and

the optimal price is decreasing post patent expiration.

If the first period is short then the optimal trajectory may approach !2 without crossing

the stationary locus for F, so time period II may not occur; in this case if (p∗−p) > −γ  
2Qp

then p∗ may be decreasing or increasing after T , whereas if (p∗ − p) < −γ  
2Qp

then dp∗

dt
< 0

for all t > T . Finally, as T ! 0, ( ∗, F ∗) 2 !2 at t = 0 and dp∗

dt
> 0 for all t > T.

III. Conclusion

Our model predicts that the optimal price tends to increase after patent expiration in

a number of circumstances. We have shown that the duration of the first phase is crucial in

determining the optimal behavior of the firm. If the duration of the patent is very short it is

always optimal for the firm to increase its price after patent expiration. The pharmaceutics

R&D industry is highly competitive and as a result, manufacturers patent new chemical

substances early in the trial stages. While patent protection is twenty years, many novel
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drugs end up with a monopoly life of eight years as a result of early patenting. Our model

suggests that short monopoly life is a possible explanation for the GCP.

On the other hand, if the first period is long then the it may be optimal for the firm

to increase its price as patent expiration approaches or after patent expiration. In the pre-

entry phase, the firm may increase its price in adjustment towards the new equilibrium

where it sells to the more price inelastic part of the demand (i.e. the consumers with higher

willingness to pay) exclusively. In the market for prescription pharmaceuticals such a pricing

policy would imply that some of the patients that were receiving medication would have to

discontinue their treatment until generic drugs entered the market.

A Appendix

The curvature of
·
 = 0 can be determined from

d2 

dF 2
| ·

 =0
= {[p∗FFQF + 2(QFF +QFp)p

∗
F + (p

∗ − c)(QFFF +QFFpp∗F +QFpFp
∗
F +QFppp

∗2
F + p

∗
FFQFp)

+p∗F (QFF +QFpp
∗
F )]

∗
[
(r + δ)− [(p∗ − c)QFp +QF ]p∗ 

]

+
[
p∗ F [(p

∗ − c)QFp +QF ] + [(p∗ − c)(QFppp∗F +QFpF ) + p
∗
FQFp + (QFF +QFpp

∗
F )]p

∗
 

]

∗ [p∗FQF + (p
∗ − c)(QFF +QFpp∗F )]}

∗
(
(r + δ)− [(p∗ − c)QFp∗ −QF ] p∗ 

)−2

During phase one, γ = 0 and assuming that the third derivatives of Q are zero the above

expression becomes
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d2 

dF 2
| ·

 =0
= [p∗FFQF + 2(QFF +QFp)p

∗
F + (p

∗ − c)(p∗FFQFp)

+p∗F (QFF +QFpp
∗
F )] ∗ (r + δ)−1

Di§erentiating the first order condition for price:

p∗FF = {[QFF + (p− c)QpFF ](−2Qp) + 2QpF [QF + (p− c)QpF ]} ∗ (−2QP )−2

= [QFF + (p− c)QpFF ](−2Qp) + 2QpFQF + 2Q2pF (p− c)] ∗ (−2QP )
−2

thus p∗FF < 0 if [QFF + (p− c)QpFF ](−2Qp) + 2QpFQF > 2Q2pF (p− c),

and

p∗ F = −
γ

2(QpF )2
< 0

Therefore, d
2 
dF 2

< 0 during the first phase.
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Notes
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2W1, Ontario, Canada. E-mail: apapanas@uoguelph.ca

1The price induced change in the growth of F is equal to −γ when price is increased

marginally. Therefore at the next instant the change in F is exactly −γ.

2The present value of the co-state however is zero when t!1.

3If the optimal trajectory begins above the stationary locus for  then A∗ is increasing

for some time after t = 0 but eventually crosses
·
 = 0 in the first phase and A∗ is decreasing

up to T.

4If the duration of the first phase is not long enough then this may not happen, see for

example !0 in Fig.1 and Fig.2.
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