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1. Introduction

Michael Grossman’s (1972) model of investment in health capital is the standard model

for the analysis of health related behaviours and the consumption of health-related com-

modities. Its appeal rests on its explicit recognition of the dynamic nature of the problem,

and the way it allows decisions about health-related behaviours to be framed as part of

an intertemporal optimization problem. In particular, when it is set up in the form of an

optimal control problem it looks at the intertemporal aspect not just in terms of adjacent

periods but from a lifetime perspective.

There are a number of alternative approaches to modelling intertemporal optimization

decisions: they can be set up as discrete time optimization problems, as in Grossman’s

original formulation, as dynamic programming problems, or as optimal control problems.

All will give the same fundamental solution to the problem, but the way the necessary

conditions for a solution are presented differs across methods. Optimal control theory,

which we take as our starting point here, has the appeal of allowing us to draw phase

diagrams in either state-control or state-costate space. Drawing a phase diagram allows

us to look at a graphical representation of the lifetime trajectory which falls out of the

individual’s problem, where her initial state of health is one of the conditions underlying

the solution, and a terminal condition, either on the terminal stock of health capital or on

the terminal marginal value of health capital is derived as part of the solution process. The

combination of the initial and terminal conditions along with the rules which determine the

level of health investment at each instant of time and the way the marginal value of a unit

of health capital changes over time serve to tie down which of the candidate optimal health

investment trajectories is optimal for the individual whose behaviour we are modelling.1

One point which the use of the phase diagram technique helps clarify is that, when we

are dealing with a finite-lived individual, the usual concept of equilibrium makes no real

sense.2 The phase diagram for the Grossman problem contains an equilibrium point, but

1Our discussion here is in terms of a bare-bones version of the Grossman model: see Laporte (2014), for

example.
2There is debate in the literature about whether the Grossman model allows an individual to choose to

live forever. While there are points of technical interest in this debate, we take as given here that, as a
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that point will be approached only over an infinite horizon. In a finite horizon problem we

can define an optimal lifetime trajectory along which the necessary conditions for lifetime

utility maximization are always satisfied, but no equilibrium, in the sense of a point which

has the property that, once we have reached it there is no intrinsic tendency to depart

from it.3 As we usually think of an equilibrium point in static analysis, it is a function of

the exogenous variables of the problem and, so long as those exogenous variables remain

unchanged, so too will our endogenous variables.

In dynamic analysis, this way of thinking about the equilibrium is useful for infinite

horizon problems but not for finite horizon ones. For a finite horizon problem there will be an

optimal trajectory whose position will depend on the values of the exogenous variables, but

the fact that the exogenous variables remain unchanged does not mean that the endogenous

ones also remain unchanged, rather it means that the location of the optimal trajectory

on the phase diagram will not change, but the endogenous variables-in our case health

investment and health capital-will change over time as the individual follows her optimal

lifetime trajectory. In effect, health capital and health investment are trended goods, where

the trend solved as part of the problem may well be intrinsically non-linear and does not

involve a constant value of change (or rate of change) per unit of time. Thus simply adding

a trend term is not likely to capture the fine detail of the evolution of an individual’s health

capital, nor is a partial adjustment framework, of the form used by Wagstaff (1986) likely to

suffice. It is certainly true that changes in the exogenous variables of the problem will cause

the optimal trajectory to shift, but a proper understanding of the nature of the trajectory

is essential as a starting point for empirical analysis.

2. Two state variable problems

As we noted above, the appeal of the optimal control methodology lies in part in the

fact that the phase diagram methodology gives us at least a qualitative picture of the

individual’s lifetime health investment behaviour. The weakness of the phase diagram

rational, forward looking human being, our optimizing individual knows that her life will be finite.
3In economic modelling we most often assume that we will reach it-i.e. that it is dynamically stable. In

saying this we are implicitly assuming that it exists, existence being a separate matter from existence.
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approach is that it can only be used in the case where the problem contains a single state

variable-in the Grossman model, health capital. Grossman’s original (1972a) formulation in

principle contained two state variables, health capital and financial capital, although in his

formalization of the problem Grossman introduced financial capital via a lifetime budget

constraint. Ehrlich and Chuma (1990) set up the Grossman model in two-state variable

form, with an equation of motion for financial capital.

In fact, Grossman’s (1972b) formulation of the problem contained three state variables,

since much of his discussion in that paper concerned the effects of allowing the rate of

depreciation of health capital, �, which was initially treated as a constant, to increase as

the individual ages. Since the derivative of age with respect to time is necessarily equal to

1, this serves to introduce an equation of motion for �, which turns it into a state variable.

Thus even if we do not introduce an equation of motion for financial capital, making � a

function of time converts the problem from a one-to a two-state variable problem, which

cannot be phase diagrammed. It is this version of the problem on which we will focus most

of our attention in what follows.

Grossman originally introduced the notion of � increasing over time as a way of tackling

the length of life problem. Since he did not impose a finite horizon on the problem, he was

faced with the possibility that his decision maker could indeed choose to live forever. As

Ehrlich and Chuma (1990) note, when we are working in continuous time terms, there is a

transversality condition which endogenizes the terminal value of T-essentially establishing

conditions under which an individual who might in principle be able to live forever will

optimally choose instead to die after a finite life-span. As Ried (1996) notes, there is

no corresponding transversality condition for a discrete time optimization problem, but it

should be noted that Grossman’s approach was consistent with the spirit of the continuous

time transversality condition, in that the optimal end of the life-span occurred when the

marginal cost of continuing to live rose to equal the marginal benefit of life extension, so

that to live any longer would involve the marginal cost of longer life exceeding its marginal

benefit. Grossman achieved this by making the rate of depreciation of health capital h

increase over time, causing the amount of investment necessary to prevent h falling below

hmin (the level of h at which death occurred) to rise, and with it the cost of staying alive.

Thus Grossman made � a function of time for a very specific purpose, and it is in that
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context, rather than as an illustration of a two state variable problem, that most of the

literature (Ehrlich and Chuma (1990), for example) has considered it.

Nevertheless, the analytical problems associated with a two-state variable control prob-

lem have made themselves manifest in this strand of the health capital literature. Intuitively

it is fairly clear how making � increase through the individual’s life course is likely to affect

her health investment decisions. If we consider an individual who is born healthy, we will

in general find that her optimal trajectory involves her stock of health capital declining

through her life course, but not at a constant rate. h declines because of the operation of

�, and the role of health investment, z, can be thought of as to slow the natural rate of

decline from the natural rate to an optimal rate.4 As the rate of depreciation rises, later

in life, h will tend to decline faster, for most individuals at a rate which is notably faster

than the optimal rate of decline, so the optimal value of z will tend to increase by whatever

amount is necessary to slow the decline in h to a rate which is optimal, given the costs and

benefits involved.

It is not, however, easy to validate that intuition theoretically. As we have already

noted it is in general not possible to draw a phase diagram for a two-state variable control

problem.5 It might be thought that, given the way in which � affects the phase diagram for

the basic Grossman model, we might introduce an increasing � by rotating the stationary

loci for the problem, causing the location of the equilibrium to shift over time. There

are, however, a couple of fundamental problems with this notion. One is that, absent a

time axis, we have no basis for deciding how rapidly the loci should shift, nor how we

should represent that on the diagram. We might consider approximating the effects of a

rising rate of depreciation by assuming that � takes on two values, a lower one when the

individual is young and a higher one when she is older. Instead of a continuous change in

the locations of the stationary loci there will be a discrete change at the point in time at

which the increase in � takes effect. While we can analyze this approximation to the two-

state variable problem using a phase diagram, since there are well-established transversality

conditions for linking the two stages of a two-stage control problem, there is a problem in

4For the case of an individual who is born unhealthy, see Laporte (2014).
5See, for example, Pitchford (1977) and Leonard and Long (1992).
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that both stationary loci will shift, but not in a manner which yields any determinate

change in the location of the equilibrium for the problem and, as we have already noted,

the individual will not be heading towards the equilibrium in any event, so we have the

additional problem of deciding how to represent a shift in the optimal trajectory when the

equilibrium shifts in an indeterminate manner. Thus we cannot modify our qualitative

analysis in a simple manner to incorporate what is basically a pretty simple modification

of the problem (certainly simpler than adding an equation of motion for financial capital).

Because of its prominence in making Grossman’s optimizing individual finite-lived, the

case of a time-varying � has been the subject of a certain amount of formal analytical work.

The general approach of this work has been that of the dynamic envelope theorem. In

static analysis the envelope theorem refers to the fact that if we differentiate the optimized

Lagrangean expression for a problem with respect to one of the exogenous variables of the

problem, the result can be interpreted as the shadow price of that variable and the derivative

of the maximized objective function with respect to that variable. Hence the definition of the

Lagrange multiplier on the consumer’s budget constraint in a utility maximization problem

as the marginal utility of income. Similar exercises can be undertaken in dynamic analysis

where the interpretation is in terms of impact on the maximized value of the intertemporal

objective function. While the static envelope theorem frequently provides useful guidance

for empirical work, dynamic envelope theorem results are seldom as fertile, because of the

intertemporal nature of the maximized objective function. In applications of the dynamic

envelope theorem approach to the case of an increasing rate of depreciation of health capital

it is common to look at the effect of a one-shot increase in �, rather than trying to analyze

a continuously changing rate of depreciation.

Thus Eisenring (1999) applied the comparative dynamics approach in Oniki (1973) to

investigating the effects of a change in an exogenous variable to the rate of depreciation of

health capital in Bruce Forster’s (1989) version of Grossman’s model.6 His results contain

a considerable amount of indeterminacy with regards to the effect of an increase in � on

the optimal trajectories.7

6See Forster (1989).
7Eisenring’s results are to some degree consistent with our earlier heuristic discussion of the effect of a

one-shot change in � in a phase diagram, where we said that the fact that both stationary loci would shift
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Ried (1996) and Ried (1998) consider in some detail the effect of a change in � on the

optimal trajectory. Ried (1998) uses a discrete time formulation which allows him to break

the effect of a change in � into its effect on individual periods before and after the change,

and adopts what is in effect a dynamic programming perspective, starting by considering

the effect of the increase when it occurs in the final period. While Ried’s approach yields

more detail than Eisenring’s it can only be described as labourious, and it is not clear that

either approach is really all that much more informative than assuming a single change in

� and drawing the phase diagram for a two-stage optimal control problem. In addition,

Eisenring notes that Oniki’s technique is not feasible when there is more than one state

variable, which means that it could not be applied to Grossman’s original formulation

when written in two-state variable form. We suggest that, even for something as relatively

straightforward as making � our second state variable, theoretical simulation would seem

to be the preferred approach to extending phase diagram analysis.

3. Theoretical Simulation Analysis

Theoretical simulation is widely used in macrodynamic economics, in which the mi-

crofoundations are taken to derive from intertemporal optimization decisions of individual

economic agents. Those models commonly adopt a representative agent approach, and

set the macroeconomy up as an infinite horizon optimization system which, because it is

basically an optimal control problem, has a saddlepoint equilibrium. The infinite horizon

assumption simplifies the simulation of the control problem to a certain degree since the

transversality conditions for an infinite horizon problem make the stable branch to the equi-

librium the optimal trajectory, and the equilibrium is a meaningful point so that it makes

sense to write a policy function, with the control variables as functions only of the exoge-

nous variables of the system. The policy function is in essence a device for comparative

static analysis since it shows how the equilibrium value of the endogenous variables changes

(and given the nature of the shifts) made the impact of the shift on the optimal finite horizon trajectory

qualitatively indeterminate. To some degree, Wagstaff (1993) empirical results are also consistent, when

Wagstaff divided his sample into two broad age ranges, the younger of which was presumed to have a low

value of � and the older a high value. This effort did not produce particularly sensible looking results.
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in response to changes in the exogenous variables. Knowing how the exogenous variables

and the equilibrium values of the endogenous variables change makes it easier to determine

the optimal trajectory from the old to the new saddlepoint equilibrium.

Theoretical simulation has been used in the health capital literature before, most notably

by Martin Forster (2001).8 Forster used simulation techniques to consider the effects of the

various conditions which had been used to define death in a model which was built on the

assumption that individual lives were finite. Briefly, if we take the end of the planning

horizon to be a fixed, finite point in time, we have a number of possible transversality

conditions from which to choose. The simplest is to define a terminal health stock hmin

and require that the individual end up at exactly that level of h at exactly T , and not

before. An alternative transversality condition would be to run h down to zero at precisely

T , but this is generally not possible with a constant rate of depreciation of health capital,

and the hard hmin condition can be seen as a reasonable alternative. Here hmin can be

seen as Grossman’s "death" stock of health capital.

A third possibility, often used when the state variable cannot be run down to zero, is

that the costate for the problem (the shadow price of health capital) reach zero at exactly

T , meaning that, whatever the individual’s actual value of h at time T , another unit would

yield her no utility. Alternatively we could define hmin as a lower bound to acceptable

health; a level which the individual is not willing to fall below at any point in her life but

would be willing to fall to at time T . If the optimal trajectory has h reaching hmin at T no

further transversality condition is needed, if optimality involves being healthier than hmin

at T then the costate must be zero at that point in time. Forster uses theoretical simulation

to investigate the implications of these various conditions for the optimal trajectory, and

we have discussed them here because, while they are not the focus of our simulations, we

shall see that the choice of terminal condition does play a significant role in determining

the shape of the individual’s optimal lifetime health capital trajectory.

While Forster uses theoretical simulation, he works within the constraints of a one-

state-variable problem and indeed, uses simulation techniques to plot phase diagrams for

8More recently, Carbone and Kverndokk (2014) use simulation techniques to examine factors that influ-

ence individual health and education investments and their empirical correlation.
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the various cases of terminal transversality conditions which he considers. This means that

his approach does not escape the problems which the two-state variable problem poses for

qualitative phase diagram analysis. We propose to extend the use of theoretical simula-

tion by adopting the approach of the macrodynamic simulation literature and generate

time-plots for health capital and health investment. Thus we will be able to find solution

trajectories for the individual-s lifetime optimization problem even in the case where we

make � into a state variable. The basic structure of the model is described below.

The optimizing individual’s problem can be written as:

max

Z
T

0
U (x, c, h) e�⇢t

dt, U

i

> 0, U
ii

< 0, i = x, c, h (1)

where x is a general consumption good which yields utility but has no impact on the

individual’s health, c is a good (cigarettes, perhaps) which yields utility from consumption

but is harmful to one’s health, h is the individual’s stock of health capital and ⇢ is the

individual’s subjective rate of discount. We also define a health investment good z which

yields no utility in itself but has a positive effect on the individual’s health. Maximization

is subject to the equation of motion for health capital:

ḣ = g(z)� f(c)� �h (2)

where g(z) and f(c) are separable elements in the health production function, g
z

> 0,

g

zz

< 0, g(0) = 0, f
c

> 0, f
cc

> 0, f(0) = 0, and � > 0 is the rate of depreciation of health

capital.

The individual’s spending is subject to the instantaneous budget constraint:

y = p

z

z + p

c

c+ p

x

x (3)

Here y is current income, which for simplicity here we do not make a function of h (thus

we are dealing with the consumption version of the Grossman model-extension to the in-

vestment version adds no issues which are relevant to our topic) p

z

is the market price of

health investment goods and p

x

is the market price of consumption goods, which we at this

point we shall normalize to 1, so that income is in real terms and the other two prices are

relative prices, and p

c

is the market price of goods which are bad for one’s health. Note

that we are assuming that the budget constraint is binding at all t, so there is no saving
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or borrowing in our model. This is just a simplifying assumption which allows us to focus

on the effects of adding an equation of motion for �. It also lets us eliminate x from the

problem.

The Hamiltonian for this version of the problem is:

H = U(Y � p

z

z + p

c

c, c, h) +  (g(z)� f(c)� �h) (4)

In a discrete time optimization problem we use Chow’s Lagrangean approach to in-

tertemporal optimization.9 The Lagrangean for the problem and first order conditions are

depicted in the appendix of the paper. As in the continuous time phase diagram analysis

we work in a fixed, finite horizon setting with a fixed endpoint, where the terminal value of

h is set at hmin.

The particular functional forms used in our simulations are:

U(x
t

, c

t

, h

t

) = x

↵1
t

c

↵2
t

h

1�↵1�↵2
t

(5)

f(c
t

) = ⌘c

b

t

(6)

g(z
t

) = �z

a

t

(7)

The specific parameter values are given in table 1:

Table 1: Parameter Values

� ⌘ � a b ↵1 ↵2 p

z

p

x

p

c

� h0 hmin T d0 d1 d2

0.12 1 0.5 0.6 2.5 0.32 0.32 1 1 1 0.99 1 0.5 12 -2 0.015 0.0015

We solved the individual’s optimization problem using techniques which are common

in theoretical macroeconomic dynamic models, assuming a finite horizon of 12 periods. In

the present case we are treating y as exogenous for our individual. Also, since the initial

value of health h0 is significantly above hmin, we take it as representing an individual who

is in good health at birth. We display health investment choices in the form of the ratio

of z, which represents healthy activities, to c, which represents unhealthy activities. We

investigate two primary modifications to the Grossman (1972b) model; our main one in

9See Ferguson and Lim (2003) Dynamic Economic Models in Discrete Time, Routledge, London and

New York.
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which the rate of depreciation of health capital increases continuously over time, and a

second in which we introduce the effect of age-specific survival probabilities. The solution

algorithm is described in the Appendix.

3.1. Baseline Analysis, constant �

The first of the simulations which we report here is a baseline run, holding the rate of

depreciation constant and holding the individual’s survival probability constant at 1 in each

period, so that there is no element of uncertainty about whether she will reach the end of

the planning horizon. In Figure 1 below we show the z/c ratio for an individual who was

born with an initial health stock h0, and in Figure 2 we show her lifetime health capital

trajectory.

In considering these graphs we should note the importance of the transversality condi-

tion as imposed in the theoretical simulation: when we are working with a fixed endpoint
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problem the final values of health investment will be determined by the requirement that

the terminal value of h take on a specific value. Theoretical simulation can obviously be

used to investigate the implications of alternative transversality conditions, in particular

the case which we noted earlier in which the terminal value of h is a lower bound and

the costate equals zero when the optimal trajectory is going to end at a value above that

lower bound. Figure 1 shows that health investment (defined here as the z/c ratio) remains

relatively constant the first part of life, as does h (as shown in Figure 2), and that both

start to fall off more noticeably in the last few periods.

Next, staying with the model in which the rate of depreciation and the survival prob-

abilities are constant, we consider the trajectories for two individuals, both born with the

same initial level of h, but where one has a higher lifetime income than the other. We

are still treating income as exogenous here, not as a function of health capital (this case
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was considered in a phase diagram context in Laporte (2014). We see from Figure 3 above

that the higher income individual’s optimal lifetime health investment trajectory lies above

that of the lower income individual until the final periods of their lives, and from Figure

4 that while the two individuals start with the same initial level of h, the higher income

individual’s stock of health capital lies above that of the lower income individual until the

last few periods, when the gap closes. The closing of the gap is a consequence of our choice

to work with a fixed endpoint value of h: were we to work with a lower terminal bound on

h we would expect the higher income individual to be healthier right up until T .

3.2. The case of an increasing �

Next we turn to the case where the rate of depreciation of health capital, �, increases

over time. Since this makes the value of � change as time passes, we have a �̇ equation,

making � a state variable where:

�

t

=
exp

�
d0 + d1t+ d2t

2
�

1 + exp (d0 + d1t+ d2t
2)

(8)

Age-specific values of �
t

are shown in Figure 5 alongside with the constant depreciation

rate � used in the baseline simulations.

Figure 6 shows the time path of the z/c ratio for the two cases which we are comparing

here, one with a constant � and the other with � increasing over time. In the latter case

the value of � is set equal first period of the age varying depreciation series.

Figure 6 shows that when � increases over time (with all its values above the constant

depreciation rate case) the optimizing individual’s z/c ratio is lower in the earlier periods
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and then it increases above the baseline case in the middle and later years, when her health

is depreciating at its fastest rate. Figure 7 shows the implications of the difference in z/c

ratios for the individual’s lifetime trajectory of health capital. We see here that the effect

of the change in the health investment trajectory is that the individual builds a lower stock

of health capital than she does in the baseline case, a result that is not so surprising given

the low value of the constant depreciation rate.

In the next set of simulation we set the value of the constant depreciation rate equal

to the mean of the time varying depreciation series, as depicted in Figure 8. So given the

values that we are using, an individual with age dependent depreciation rates will have

lower depreciation rates than the constant case for more than half of lifetime and higher for

the rest. Figure 9 reveals quite interesting dynamics for the z/c lifetime trajectory: when �

increases over time the individual invests more in health at the beginning and later periods

14



of life and less in the middle periods compared to the case with a constant depreciation rate.

Figure 10 depicts the outcomes for the individual’s lifetime trajectory of health capital. As

a result of the dynamics of the z/c ratio, the individual builds a higher stock health capital

when depreciation rates vary with age and are lower for the first half of the life-cycle. Since

we are using the same fixed endpoint for h in both cases the health stocks converge in later

periods.

3.3. The case of non-constant survival probabilities

Next, we run simulations on the effect of introducing non-constant survival probabilities

to the Grossman model. In the first sets of graphs below we establish a baseline by holding

the rate of depreciation of health capital constant over time. Since this is an optimal control

model we are modeling the plan formulated at the beginning of the planning horizon by
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a forward looking individual. By the nature of our simulation exercise, we will assume

that our individual will wind up living through the entire planning horizon, but the fact

that she does not know that with certainty means that she will discount the future in a

manner which reflects not just her pure rate of time preference but also her calculations

of her survival probabilities. In a health investment model we cannot augment the pure

rate of discount, since we have been assuming that she adopted exponential discounting,

whereas a realistic schedule of age-specific survival probabilities (viewed from birth) will

not be exponential: Canadian probabilities for age-specific survival are shown in Figure 11

below for two time periods, 1871 and 2010.

The non-exponential nature of the survival discount factor raises the likelihood of what

would appear to be time-inconsistent behaviour even though the exponential nature of our

individual’s pure time discounting process will yield time consistent behaviour (see Strotz
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(1956)). We intend to explore the implications of this fact in future simulation exercises.

In Figures 12 and 13 below we compare the trajectories for the z/c ratio and health

capital for two cases, one in which survival is certain and the other in which we have

assumed that the individual’s survival probabilities were those of Canada in 1871.

In terms of the values in our simulations, adding more realistic survival probabilities

makes relatively little difference. We see that the effect of the greater degree of discounting

is to reduce health investment throughout the life, with a consequent reduction in life-

time health status. This effect is consistent with the view that improvements in those

factors which affect life expectancy but which are beyond the control of an individual,

hence exogenous to our optimizing individual, will tend to encourage her to increase her

own investment in health. The model which we are using here does not allow h to affect

our individual’s survival probabilities-modifying that would seem likely to produce a small
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reinforcing effect.10

Finally, in Figures 14 and 15 we compare our baseline model with one in which we have

combined age-specific increasing rates of health depreciation and decreasing age-specific

survival rates. The baseline model has a constant depreciation rate equal to the mean of

the age increasing depreciation series, depicted in Figure 8, and survival rates are equal to

1.

In the case with varying depreciation and survival rates the z/c ratio is higher in the

first period and then below the case depicting constant rates, with the exception of the last

few periods. Not surprisingly, given our results to this point, the results look very much like

10In future simulations we intend to explore the effect of adding realistic survival expectations interacting

with other patterns of values for the remaining parameters.
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those of the cases in which we have added only increasing depreciation rates. One difference

is that when depreciation rate are constant and survival is certain, health capital is higher

at the end of the lifetime.

4. Conclusion

Our argument in this paper has been two-fold: first that much of the richness of the

Grossman model is in the intrinsic dynamics of the optimizing individual’s optimal lifetime

trajectories, and second that theoretical simulation is a useful device for focusing attention

on the shape of those trajectories.11 Theoretical simulation is widely used in other areas

of theoretical economics, notably dynamic macroeconomics, and advances in the available

software and programming techniques have greatly enhanced its potential for use in the-

oretical health economics. While it is true that simulation results are dependent on the

parameter values assumed, sensitivity analysis can be used to evaluate the degree of that

dependence, and the use of simulation can draw attention to the importance of certain

assumptions-in our case the importance of the assumption of a fixed endpoint value of h for

the optimal trajectories.12 The ability to more fully characterize the dynamics of the indi-

vidual’s optimal plans suggests that theoretical simulation can inform econometric analysis

by allowing the investigation of a whole range of factors within the Grossman model, in

terms of their expected effect on individual health-related behaviours and ultimately the

individual’s lifetime health.
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Appendix

In this appendix, we provide a more detailed account of the solution algorithm used to

solve the dynamic problem. The individual chooses {c
t

}T
t=1, {xt}Tt=1, {zt}Tt=1 and {h

t+1}T�2
t=1

to maximize her expected discounted lifetime utility function. Her problem can be summa-

rized as follows:

max

ct,xt,zt,ht+1E1

(
TX

t=1

�

t�1⇧ (�
s

)t�1
s=1 U (x

t

, c

t

, h

t

)

)
(9)

subject to the following constraints:

h

t+1 = g (z
t

)� f (c
t

) + (1� �

t

)h
t

(10)

y = p

x

x

t

+ p

z

z

t

+ p

c

c

t

(11)

h1 = h, h

T

= hmin (12)

c

t

� 0, x

t

� 0, h

t

� 0 (13)

21



Letting X(c
t

, z

t

) = (y � p

z

z

t

� p

c

c

t

) p�1
x

, the Lagrangean function takes the form:

L =
TX

t=1

�

t�1⇧ (�
s

)t�1
s=1 {U (X(c

t

, z

t

), c
t

, h

t

)� �

t+1 [ht+1 � g (z
t

) + f (c
t

)� (1� �

t

)h
t

]}

Combining first order conditions we get:

U

x

X

z

+
�
(U

x

X

c

+ U

x

) f�1
c

�
g

z

= 0 (14)

��

t

⇣
U

+
h

� (1� �

t+1)U
+
x

X

+
z

�
g

+
z

��1
⌘
+ U

x

X

z

g

�1
z

= 0 (15)

where the + sign indicates functions updated for one period. Since finding the distri-

butions of c
t

, x

t

, z

t

and h

t

from time 1 to T requires solving a large system of non-linear

equations, we employ the recursive structure of the individual problem. These profiles

are estimated by following a direct computation method, described in detail in Heer and

Maussner (2005), which involve forward iterations on the first-order conditions that we

obtain from the maximization problem (non-linear equations are solved using routines de-

veloped by Kelley (2003) and Miranda and Fackler (2002)). The solution algorithm that

we have followed is described in steps below:

Step 1. Guess the initial level of the health investment z1: given endowments h1 and

y and initial iterate z1, find c1 with the help of equation 14. Find x1 using the period

budget constraint, equation 11.

Step 2. Given values for the first period, we can calculate the level of health capital in

the next period h2 using equation 10.

Step 3. Given values for c1, z1, x1 and h2, the system of the two non-linear equations

14 and 15 is used to solve for the two unknowns z2 and c2. Similarly, x2 is computed by

using the period budget constraint.

Step 4. Repeat step 2 to compute h

t+1 and step 3 to compute z

t+1 and c

t+1, given values
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for c

t

, z
t

, x
t

and h

t

- continue this way until period T .

Step 5. Check whether h

T

� hmin < ✏, where ✏ denotes the level of tolerance (a value

of 0.00001 in our estimation). If this condition is met than the problem is solved, otherwise

update the initial iterate in step 1 and repeat until convergence.
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