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I Introduction

Ever since 1972, Michael Grossman’s model of investment in health capital has been the cornerstone
of the way economists model health related behavior both theoretically and empirically (Grossman,
1972). Grossman’s model is firmly in the Becker tradition of Human Capital: it assumes that
the individual is a forward looking, optimizing individual who, in making decisions today, takes
account of their possible future consequences. In Grossman’s framework, as the name implies, the
individual’s underlying level of health is treated as a capital good, to be built up by investment
and run down by lack of investment. It is not a commodity that can be acquired instantaneously -
an individual who wishes to increase his stock of health capital to some target can only do so over
time. Health Capital as conceived here is different from how healthy an individual happens to feel
today: having a flu, or even a more serious illness, will not necessarily reduce ones stock of health
capital, regardless of how much it might reduce ones instantaneous level of utility. Health capital
is best thought of as relating to the individual’s ability to resist disease, and to perform what the
health care literature refers to as activities of daily life: serious arthritis, which makes it difficult
to go upstairs, does represent a reduction in ones stock of health capital.

Grossman’s model assumes that the individual makes decisions about how much to invest in
his stock of health capital at any instant on the basis of a calculation of the costs and benefits,
where both costs and benefits may be distributed over time. The benefits side of the calculation is
generally seen as having two components: a consumption benefit, in the sense of the direct utility
which an individual receives as a result of being healthier, and an investment benefit, which refers
to the impact of the individual’s health on their income. This latter benefit can refer to immediate
payoff from being healthier, as in the case of someone who is paid on a daily or piecework basis
and whose income falls when they are unable, because of poor health, to put in as much work, or
it can refer to longer term effects, as in the case where a salaried employee who has a history of
sickness-related absences from work might be less likely to receive promotions. It is not unusual for
researchers to focus on one or the other of these two benefits and excluding the other, considering
the pure consumption or pure investment version of the Grossman model. We shall refer to the
version of the model that includes both components as the full Grossman model.

Over the years, a number of criticisms have been aimed at the Grossman model [hereafter,
MGM]. The Grossman criticism literature has been well summarized by Zweifel (2012), Galama
et al. (2012) and Galama and Kapteyn (2011), so we take these papers as our reference points1.
Zweifel (2012) is particularly forthright in arguing that the Grossman model is fatally flawed saying
(pg. 677): “...the acronym MGM already suggests that the model amounts to something like the
Hollywood dream factory Metro-Goldwyn-Mayer: much elegance, very inspiring, but of limited
relevance to the real world”; (pg. 679) “In sum, even after 40 years of effort, the main criticisms
of the MGM still stand”; (pg. 681) “there is something to be gained by breaking away from the
MGM fixation.” The criticisms most often cited as fatal to the MGM are that the model: 1)
suffers from a fundamental indeterminacy with regard to the optimal level of investment in health
(Ehrlich and Chuma, 1990); 2) predicts that there will be a positive relationship between health
investment and health status whereas empirically this relationship is typically negative; 3) does not
make current health behavior dependent on the past; 4) does not predict that health declines with
lower socio-economic status; and 5) does not preclude an individual choosing to live forever.

If these criticisms are indeed fatal, then economists need to develop an entirely new framework
for the analysis of health-related behavior. This paper evaluates the merits of these criticisms by

1Zweifel’s editorial prompted a response by Kaestner (2013) to which Zweifel (2013) responded.
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deriving the testable predictions of the MGM within a dynamic optimization framework. In effect
we reverse the typical empirical testing procedure by taking empirical results which it is claimed the
model cannot predict, and show that in fact it does encompass them. A version of the MGM model
that includes both the consumption and investment benefits of health is presented using the tools
of optimal control including phase diagram analysis.2 Using phase diagrams allows the optimal
trajectories that the MGM predicts individuals will follow over time to be traced and provides
deeper insight into the inherent dynamics of the model. The major criticisms leveled at the MGM
are then addressed within this framework where the first set of criticisms are treated by analyzing
the comparative statics of the model and the second set of criticisms that relate to whether the
MGM adequately reflects inter-temporal effects are then analyzed using phase diagrams. This
paper argues that these criticisms are baseless and that when the MGM is properly characterized
as a problem in inter-temporal optimization it provides a firm foundation for empirical analysis of
health-related behaviors.

II Grossman as an application of dynamic optimization
theory

Formally, Grossman’s model can be analyzed using any of the tools of inter-temporal optimization:
optimal control theory, dynamic programming or Chow’s Lagrangian approach to inter-temporal op-
timization, and looked at as either a discrete or a continuous time problem. The various approaches
are ultimately equivalent, so choice among them comes down to convenience and to preferences for
the readiness with which certain parameters of interest fall out of the analysis. This paper adopts
the continuous time optimal control approach to analyzing the model, since it allows for use of phase
diagram representation of the individual’s optimal lifetime trajectory of investment in health.

Consider a one-state variable version of the MGM set within a continuous time optimal control
framework.3 The individual aims to maximize her discounted lifetime utility:

Max

∫ T

0

U(Ct, Ht)e
−ρtdt UC > 0, UCC < 0, UH > 0, UHH < 0, UCH > 0 (1)

where C is non health-related consumption, H is health capital (the state variable in the problem)
and ρ is the individual’s subjective discount rate. As it is set up, the model includes both the
consumption and investment benefits of health, since H enters through the utility that the individual
derives from having it and will also be positively associated with income. The individual is assumed
to have a finite life T. The stock of health capital, H is assumed to evolve according to the following
equation of motion:

Ḣ = G(I)− δH, GI > 0, GII ≤ 0, G(0) = 0, 0 < δ < 1, I ≥ 0 (2)

2Galama and Kapteyn (2011) set the Grossman problem up in an optimal control framework, but work with
the present value Hamiltonian. This effectively makes their problem non-autonomous. This paper uses a current
value Hamiltonian, which effectively makes the problem autonomous by removing time as an explicit argument and
therefore allows for the use of phase diagram techniques. Time is obviously still present but has been subsumed into
other parts of the problem.

3See Ferguson and Lim (1998) for an introduction to continuous time optimal control and Leonard and Van Long
(1992) for a more advanced treatment.
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where I is health investment and G(I) is the instantaneous production function for health capital.
Here Ḣ can be thought of as net investment in health, with δ the depreciation rate and G(I) as the
gross investment term. I is assumed to have a positive marginal product in G.4 Note that I does
not enter the utility function - it yields benefit to the individual only through the additional health
that it generates.

The nature of the gross investment term, G(I), varies across the literature. Here it is assumed
that health is produced using only purchased inputs, I. It is not uncommon in the literature for
there to be a time element in the input set, either because using the I goods takes time or on
the assumption that time devoted to healthy activities can add to health even in the absence of
complementary specialized I goods. In this model, time is not included as an input since it is not
crucial to the inter-temporal issues dealt with in this paper5.

One aspect of the form of the health production function, G(I), is the productivity of I in
the production of H. As will be discussed below, one long-running strand in the literature focuses
on the question of whether the production function can have constant returns to scale (CRS) or
whether the model fails unless decreasing returns to scale (DRS) is assumed6. How this question is
operationalized depends on the form of the production function. In assuming a single, purchased
input I, the general case is taken to be that GI > 0, GII ≤ 0. When we are dealing with issues
pertaining to the implications of the assumption of constant returns in the Grossman framework,
we will assume that G(I) = I.

The issue of constant versus diminishing marginal productivity of I will be discussed once the
model is set out in general form since this plays a key role in some of the debate surrounding
the MGM. A non-negativity constraint can be imposed on I, indicating that the individual cannot
reduce her stock of health by, in effect, selling it.

In expression (2), δ is the intrinsic rate of depreciation of health capital. Under the assumption
that G(0) = 0, the equation of motion for H says that when the individual undertakes no health
investment, their stock of health capital will decline at a constant proportional rate δ. Grossman
(1972) discussed the case where δ increases with the age of the individual, and indeed made it a key
part of his discussion of finite life. Section VII discusses the implications of relaxing the constant δ
assumption.

Essentially (2) is a non-stochastic7 first order differential equation in H. Health investment, I,
is defined as a commodity which can be purchased in the market at a price pI. It is assumed that
the individual has an instantaneous budget constraint of the form:

4We can easily extend the model to the case where the production function is represented by G(I) - F(S) where
S represents goods (consumption of cigarettes, for example) which are harmful to the individual’s health. We focus
on health goods rather than health “bads”. See for example, Jones et al. (2014).

5When the time input approach is taken the utility function has to be modified to include leisure time as one
of its arguments, and a time constraint, binding at every instant (since one cannot bank or borrow time) added.
The time budget in such a model generally takes account of leisure time, healthy work time, time devoted to health
investment, and sick time. If there was a choice among a number of different possible health investment strategies,
differences in their time requirements and the opportunity cost of time would be a significant factor.

6Grossman (1972) assumed CRS in the production of health and made use of some of the implications of CRS in
his detailed analysis. The question might well be asked whether CRS is an essential element of the MGM, or merely
a simplifying assumption. It would presumably surprise very few people if it were to turn out that empirically, the
health production function does not display CRS. The most significant of the criticisms of the CRS assumption from
a theoretical perspective is that by Ehrlich and Chuma, which we shall discuss below.

7This is a non-stochastic (i.e. deterministic) version of the model, but it is possible to incorporate uncertainty.
See for example, Cropper (1977) and Ferguson and Laporte (2007).
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Y0 + Y (H) = Ct + pII YH > 0, YHH < 0 (3)

where Y0 is the exogenous portion of the individual’s income and Y(H) is the portion of the
individual’s income which depends on her stock of health. If one were working with a model that
included time variables as choice variables, then the concept of healthy time could be defined (with
healthy time and sick time adding up to total time) and allowance made for the individual’s decision
as to how to allocate healthy time across work, leisure and health investment activities. This paper
tackles the investment aspect of the Grossman framework by making income a function directly of
H, with H depending on past decisions about allocating money income between C and I.

The price of non-health related goods is set to 1 for simplicity. This means that the price of I can
be regarded as being relative to the price of C and income as measured in terms of real consumption.
At this point, a binding instantaneous budget constraint is used as a further simplification from
Grossman’s original formulation. This assumption is relaxed below to include an asset equation in
order to address a fundamental debate in the literature that stems from the paper by Ehrlich and
Chuma (1990).

The Lagrangian for this version of the Grossman problem can be written as

L = U(Y0 + Y (H)− pII,H) + ψ[G(I)− δH] + λI (4)

where the budget constraint is used to substitute out C. In this formulation, ψ is the co-state on H
or the shadow price of an additional unit of H. It is the increase in maximized lifetime utility that
could be attained at some time t if the individual were to be given unexpectedly at t, an additional
unit of H. λI is a Kuhn-Tucker expression, with λ = 0 when I > 0, and λ > 0 when I = 0.

The first of the Pontryagin necessary conditions for the one state variable problem, on the
assumption, for the moment, of an interior solution for I (i.e. λ = 0) is

∂L
∂I

= −pIUC + ψGI(I) = 0 (5)

which can be written as

ψGI(I) = pIUC (6)

This is a marginal benefit (MB) equals marginal cost (MC) condition for investment in health.
The left hand side of this expression is the product of GI, the marginal product of an additional
unit of I in terms of production of health times ψ, the shadow price of another unit of health, and
hence shows the utility value of another unit of I, or the MB of I in terms of additional utility from
H. The right hand side is the MC of an additional unit of I, also in utility terms. One unit of I
costs pI dollars, and since the price of C has been set to 1 that means that a one-unit increase in I
must be matched by a reduction of pI units in C. The marginal utility of a unit of C is UC , so the
cost in terms of utility foregone of an additional unit of I is pIUC .

This condition plays a key role in two of the debates in the literature on the MGM - whether
the model must exhibit decreasing (rather than constant) returns in order for it to have a solution,
and whether the fact that GI > 0 means that the model predicts that there must be a positive
correlation between I and H when the model is estimated on individual level data.
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III Comparative statics relation between I and H

Zweifel (2012) argues that the MGM predicts a positive relation between I and H but that in
empirical work a negative relation is generally found; that is, sicker people (lower health status) are,
for example, found to visit the doctor more frequently. This criticism is based on the presumption
that because the marginal product of I in the health production function is positive i.e. GI(I) > 0
when I is regressed on H, a production function is being estimated. In effect, it treats H as non-
durable as opposed to a durable capital good-the only way to get more H now is through more I
this period.

To understand the issue involved it is important to remember that the individual’s observed
choice of I is a derived demand, and that, if the model is correct, it must always satisfy the first
order condition in equation (6), that the additional benefit of an additional unit of I must always
equal its MC.

Since (6) must always hold, assuming the model is correct, it can be used to derive testable
hypotheses about factors affecting I. Totally differentiating (6) yields:

GI∂ψ + [ψGII + p2IUCC ]∂I − pIUCC∂Y0 + [pIUCC − UC ]∂p− [pIUCCYH + pIUCH ]∂H = 0 (7)

and rearranging (7):

∂I

∂ψ
=

−GI(I)

[ψGII + p2IUCC ]
> 0 (8)

so that, as might be expected, an increase in the utility value of H increases the optimal level of I.
Looking at the relation between I and pI , gives:

∂I

∂pI
=

UC − pIUCC
[ψGII + p2IUCC ]

< 0 (9)

which shows that the demand curve for I is downward sloping in pI . From (10) it can be seen that
investment in health is a normal good (i.e. when looking at the effect of a change in the strictly
exogenous part of income Y0):

∂I

∂Y0
=

pIUCC
[ψGII + p2IUCC ]

> 0 (10)

To determine what the MGM predicts about the impact of changes in H on the level of health
investment I (holding everything else constant including ψ, the shadow price of H), depends on the
magnitude of YH since [ψGII + p2IUCC ] < 0, UCC < 0 and UCH > 0.

∂I

∂H
=
pIUCCYH + pIUCH

[ψGII + p2IUCC ]
≶ 0 (11)

It should be noted that the sign of (11) depends on which version of the MGM is being considered.
For example, if YH = 0 as with a pure consumption version of the MGM (i.e. no investment benefit
of health) then (11) can be signed:
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∂I

∂H
=

pIUCH
[ψGII + p2IUCC ]

< 0 (12)

which means that an increase in H reduces the optimal level of I. On the other hand, with the pure
investment version, H does not appear in the utility function and UCH = 0, then there would be a
positive comparative static relation between I and H. Note that the negative relation between I and
H is not a consequence of an assumption of CRS, but holds even when GII < 0; that is under an
assumption of diminishing marginal productivity of I. Given that GII and UCC are both negative,
the sign of (12) clearly depends on the sign of UCH which is taken to be positive.

Basically, the higher the initial level of H the lower the value of another unit of I relative to
its opportunity cost in terms of foregone consumption of other, non-health related commodities.
Again, noting that the value of a unit of I is derived from the value of the additional H which it
can produce and hence the lower the optimal level of I.

If YH > 0 and H appears in the utility function with UCH > 0, as with the full consumption plus
investment version of the MGM8, then the sign of (11) will depend on whether pIUCCYH+pIUCH ≶

0. If YH is sufficiently large,
∂I

∂H
> 0, otherwise

∂I

∂H
< 0.

In summary, the MGM may allow a positive relation between an individual’s stock of health
and their investment in health but this is not a consequence of the form of the production function,
as asserted by the critics, rather it is a consequence of the magnitude of the return to health in the
form of additional income. If YH is large when H is low it is not impossible to observe a positive
relation between I and H, but, at values of H at which YH is small one would expect to observe a
negative relation.

In what follows it is assumed that [UCCYH + UCH ] > 0. Clearly, though, the magnitude of YH
is a question of some importance for empirical work: for an individual who is initially in very poor
health, an improvement in health might result in a sufficiently large increase in income that the
income effect would lead to further investments in health.

In addition, it is worth repeating that Zweifel’s argument essentially assumes that H is a non-
durable commodity in which the level of H today depends solely on the level of I today. In fact, H
is a durable capital good, a fact that plays a very significant role in determining the individual’s
current optimal value of I. This point will be taken up in section V, where the determinants of the
optimal trajectories for I and H implied by the MGM are explored.

IV Does the Grossman model suffer from indeterminacy?

The expression

−pIUC + ψGI = 0 (13)

has been referred to as the necessary condition for I in the MGM. It says that the optimal level of
I at any instant is that at which the MC of I equals its MB, where the MB is the additional health
that an additional unit of I will produce, multiplied by the shadow price of each unit of H.

8The term UCH will also = 0 in the consumption version of the model if the utility function is separable in H
and C.
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This condition is at the root of a long-standing issue in the literature, starting with the paper
by Ehrlich and Chuma on optimal length of life in the MGM9. In that paper, based on their version
of the MGM, Ehrlich and Chuma argue that the MC=MB condition cannot be satisfied for the
MGM unless DRS hold, and in particular that under Grossman’s assumption of constant returns
MC will in general not equal MB and the optimal level of I cannot be determined in the model as
Grossman set it up.

In the context of the model presented here, it is easy to show that the argument made by Ehrlich
and Chuma does not hold. MB has been identified as being equal to ψGI . MC is pIUC , because
given the assumption of an instantaneously binding budget constraint, each additional unit of I
which is purchased results in a reduction in C of pI units, each of which has a utility value equal
to UC . As I increases C decreases and UC increases so the marginal cost curve is positively sloped
in I.

The production function expression, G(I), allows for differing degrees of returns to scale in
the production of H. The simplest case of constant returns would be G(I) = I, giving GI = 1.
Substituting this into the MB = MC condition gives

pIUC = ψ (14)

which is in general easily satisfied, even if ψ were constant10. Ehrlich and Chuma’s indeterminacy
argument is concerned with the case where ψ is everywhere above pIUC so there is no limit to
optimal investment in health. If there is a no-intersection problem it would actually be in the case
where ψ is everywhere below MC for non-negative I, meaning that there is no interior solution for
I, which would arise if the MB of another unit of health was so low that the individual would really
like a negative value of I. Here, however, the non-negativity condition on I cuts in and the value
of I is determinate, being equal to zero. Thus the Ehrlich-Chuma argument does not apply in this
version of the MGM.

Our version does, however, differ from Ehrlich and Chuma’s in a number of ways, the most
important of which is that theirs is a two-state-variable model. Rather than the instantaneous
budget constraint used here, they follow Grossman in assuming a binding lifetime budget constraint,
meaning that at any point in time the individual’s expenditure might exceed or fall short of their
income, although lifetime expenditure cannot exceed lifetime income. To see the E-C critique in
this context11, the Hamiltonian can be set up for their version of the problem.

The Grossman problem in this context is

9Ried (1998) criticizes the Ehrlich and Chuma result, raising a different issue but still in an optimal control
perspective.

10Grossman (2000) makes the point that the term ψ is the shadow price of H. This means that its value at any time
t is the value to the individual in terms of maximized lifetime utility from that point on of unexpectedly receiving
another unit of H. This value function is itself a utility function, with a particular, additively separable over time
structure, and will display a positive and diminishing marginal value of H. Since I yields no utility in itself (indeed,
I may even yield disutility in itself) its utility is a derived utility, based on the impact on the value function at t of
the additional units of H which will be produced from an additional unit of I. Thus diminishing returns to H in the
value function translate into diminishing returns to I, so ψ will not be a constant, or independent of I, as Ehrlich
and Chuma argue.

11There are some other differences between Ehrlich and Chuma’s version of the model and that presented here,
but they are not relevant to the issue at hand.

8



Max

∫ T

0

U(Ct, Ht)e
−ρtdt UC > 0, UCC < 0, UH > 0, UHH < 0, UCH ≥ 0 (15)

subject to

Ȧ = rA+ Y0 + YH − C − PII (16)

and

Ḣ = G(I)− δH, GI > 0, GII ≤ 0, G(0) = 0, 0 < δ < 1, I ≥ 0 (17)

giving as the Hamiltonian

H = U(Ct, Ht) + ΨH [G(I)− δH] + ψA[rA+ Y0 + YH − C − PII] (18)

where ψA is the costate, or shadow price for financial assets, A. Here Ct becomes a choice variable
along with It since the two are no longer bound by the budget constraint at time t. (Note that it
is still assumed that pC = 1.) The necessary conditions for C and I are

UC − ψA = 0 (19)

and

ψHGI − ψAPI = 0 (20)

In their presentation of the MGM, Ehrlich and Chuma (following Grossman’s original exposition)
introduce a cost of investment function, C(I), which has increasing MC when I is produced under
conditions of DRS and constant MC when I is produced under CRS. In their formulation of the
model, I is itself a produced commodity, produced using market inputs and time. Their equation
of motion for H is

Ḣ = I − δH (21)

Thus Ehrlich and Chuma put the DRS in at the stage of the production of I, and assume that
one unit of I is equivalent to one unit of H, i.e. I is the current output of the health production
function. Here we assume that I is an input into the production of H, which can be bought directly
in the market (medical care, for example) and allow non-constant returns to enter through the
production function G(I). To make the two sets of notation equivalent, one could replace Ehrlich
and Chuma’s I, in their equation of motion for H, with the production function for I, and make the
arguments of their production function the choice variables. They characterize CRS in terms of the
production function for I; here constant returns are characterized by writing G(I) = I.
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In terms of the notation used here, Ehrlich and Chuma’s expression for what they term the flow
equilibrium for optimal investment in health is

CI(I) = ψH/ψA (22)

where the counterpart to their MC term is pI/GI(I). Thus equation (22) can be re-written as

pI/GI(I) = ψH/ψA (23)

This is an expression that is equivalent to Ehrlich and Chuma’s flow equilibrium condition.
Ehrlich and Chuma argue that the right hand side of (23) is independent of the scale of investment.
Their argument with regards to CRS is that if G(I) = I so that GI(I) = 1, (23) becomes

pI = ψH/ψA (24)

and that there is no guarantee that (24) can be satisfied, or yield a determinate choice of I, since
both sides are taken to be independent of I.

Ehrlich and Chuma’s introduction of the C(I) function clouds a certain key aspect of the problem
- the fact that the decision-maker is a utility-maximizing individual, and this is an individual-level
problem. Their use of C(I) (which follows from Grossman’s discussion of the equivalence between
the individual’s problem of the optimal choice of health investment level and the firm’s problem of
choosing an optimal level of physical capital) draws attention away from the first order conditions
of the problem, and has led researchers who followed their approach to pass over the same issue.

To see this, consider equation (19) above: UC − ψA = 0. This obviously gives

ψA = UC (25)

Substituting (25) into (23) and rearranging slightly gives

UCpI = ψHGI(I) (26)

which is the same as the necessary condition which was derived in the absence of an equation of
motion for A. In that case, of an instantaneously binding budget constraint, it was argued that
an increase in I must reduce C, so the opportunity cost of an increase in I was lost utility from
consumption of other, non-health related commodities.

The same argument holds here, even though the budget constraint is binding over the lifetime
and not instantaneously. The decision to increase I by one unit is a decision to reduce accumulated
assets by pI units. Each unit of A has a shadow price of ψA, and optimality requires that ψA = UC .
No matter how the reduction in accumulated financial capital is distributed across consumption
over time, an increase in I still has an opportunity cost in the form of reduced utility from other
consumption. The opportunity cost will be less in this case than in the case of an instantaneously
binding budget constraint because the individual has the option of taking part of the reduction of
consumption at some point in the future rather than taking it all today, but there will still be an
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opportunity cost. Ehrlich and Chuma’s introduction of a cost-of-production function for I draws
attention to the market element of the cost of investment in health and away from the element
which is accounted for by the individual’s subjective opportunity cost.

Now, introducing CRS by setting GI(I) = 1, the condition (26) becomes

UCpI = ψH (27)

And again there is no reason to doubt that this condition can be satisfied - i.e. no reason to believe
that there will necessarily be an indeterminacy problem with ψH above the marginal cost of I at
all values of I.

The Ehrlich and Chuma indeterminacy argument lies behind many of the recent critiques of the
MGM, but it is argued here that their particular critique does not have the force that it has been
accorded in the literature. There have been other arguments made relating to the CRS assumption
which we turn to in the next section.

V Dynamic predictions from the Grossman model

If as was argued above, the MGM with CRS does not suffer from the indeterminacy of I problem,
one can reasonably ask whether the other arguments made about the failures of the CRS version
of the model hold up. The critics take Grossman’s use of a CRS production function for health as
not just an issue of a simplifying assumption but seem to regard it as exposing a fatal intrinsic flaw
in the entire MGM framework.

The criticisms which are tied to CRS are now addressed within a model which assumes CRS in
the production function for gross investment in health i.e. G(I)=I. Under the CRS consumption
plus investment version of the model, GI = 1, GII = 0, YH > 0, and YHH < 0.

Two key arguments have been made which purport to expose fatal weaknesses in the MGM.
First, that solutions to the current health investment decision lack history in that they do not take
account of initial health (Galama et al., 2012) and related to this that the MGM does not reflect
the behavior of an individual who has suffered a major illness (Zweifel, 2012). Second, that the
MGM does not predict that health will decline faster for individuals of lower socio-economic status
(Galama et al., 2012).

Returning to the one-state variable version of the MGM introduced in section II, allows for the
use of phase diagrams12, which in turn allows for a focus on the dynamic aspects of the Grossman
approach that seem sometimes to be overlooked but are essential to addressing the arguments raised
by the critics. As we have argued in the previous section, the choice between an instantaneously
binding and a lifetime budget constraint is not fundamental and the gain in clarity from being
able to use the phase diagram technique outweighs any loss from working in a one-state variable
framework.

The evolution of H and I over time can be represented in a diagram with I on the vertical and
H on the horizontal axis. The equations of motion for H and I will be used to determine how the
individual’s optimal trajectory evolves over time. The starting point for a phase diagram is the
definition of stationary loci for each of I and H. The stationary locus for I has the property that,
on the locus there is no intrinsic tendency for I to change. In other words, on the stationary locus
for I, İ = 0. Similarly, on the stationary locus for H, Ḣ = 0. Given the stationary loci, the (I,H)

12Phase diagrams cannot, in general, be used for two state variable problems.
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space can be divided into regions where I and H are increasing or decreasing by finding the phase
arrows for I and H13.

In the CRS version of the one-state variable MGM, the individual’s objective remains to maxi-
mize (1), but when G(I) is replaced by I, the equation of motion for H becomes

Ḣ = I − δH (28)

Maintaining the assumption that the budget constraint is satisfied at all values of t, and assum-
ing, following Grossman, that I is non-negative (I ≥ 0), instead of the Lagrangian the current value
Hamiltonian for the problem can be written as:

H = U(Y0 + Y (H)− pII,H) + ψ[I − δH] (29)

The Pontryagin necessary condition with respect to I in this case is:

∂H/∂I : −pIUC(Y0 + Y (H)− pII,H) + ψ = 0 (30)

which can be re-written as ψ = pIUC(Y0 + Y (H))− pII,H). The second of Pontryagin’s necessary
conditions is:

ψ̇ =ρψ −HH (31)

or

ψ̇ =ρψ − [UCYH + UH − δψ] (32)

This condition is one of the advantages of using the optimal control framework since it draws
attention to the fact that the shadow price of H will change as time passes simply because of the
passage of time with no change in any of the exogenous variables in the model. As the first of the
Pontryagin necessary conditions (30) shows, if the shadow price of H is changing as time passes,
the level of I must also change to ensure that MC continues to equal MB.

The stationary locus for H in this case becomes a straight line:

I = δH (33)

Turning to the stationary locus for I, totally differentiating (30) with respect to time will give
an equation in Ḣ, İ and ψ̇. Substituting in (28) and (32) and rearranging yields an equation for İ:

İ =
pI [UCH + UCCYH ][I − δH] + [UCYH + UH ]− [ρ+ δ]pIUC

p2IUCC
(34)

To find the slope of the stationary locus for I, set (34) to 0 which requires that

13See Ferguson and Lim (1998) for an introduction to the technique.
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pI [UCH + UCCYH ][I − δH] + [UCYH + UH ]− [ρ+ δ]pIUC = 0 (35)

Differentiating (35) with respect to I gives

pI [UCH + UCCYH ]− p2I [I − δH][UCHC + UCCCYH ] + [ρ+ δ]p2IUCC − pI [UCH + UCCYH ] (36)

or
[ρ+ δ]p2IUCC − p2I [I − δH][UCHC + UCCCYH ] (37)

The term [I- δ H] which is equal to Ḣ, could be positive or negative depending on which side of
the stationary locus for H one happens to be at, and will be zero at the point where the stationary
locus for I cuts the stationary locus for H. At that intersection point, the second term in (37) drops
out and [ρ+ δ]p2IUCC < 0. Elsewhere, the term [UCHC +UCCCYH ], which is the derivative of UCC
with respect to H, has one negative (the first) and one positive (the second) element and cannot be
definitively signed. Because of the mix of signs it can probably assumed that it is small in absolute
value whatever its sign might be.

Now taking (35) and differentiating it with respect to H, we have

[UCCY
2
H + 2UCHYH + UCYHH + UHH ]− [ρ+ 2δ][UCH + UCCYH ]

+[I − δH]pI [UCHH + 2UCHCYH + UCCCY
2
H + UCCYHH ] (38)

The first term in square brackets in this expression can be assumed to be negative, on the
assumption that the overall marginal utility of health is diminishing when accounting for both its
effect on income and its direct consumption effect. The last term contains a mixture of positives
and negatives and can presumably be assumed to be small.

The slope of the stationary locus for I is

∂I

∂H
=

[ρ+ 2δ][UCH + UCCYH ]− [UCCY
2
H + 2UCHYH + UCYHH + UHH ]− [I − δH]pI [UCHH + 2UCHCYH + UCCCY

2
H + UCCYHH ]

[ρ+ δ]p2IUCC − p2I [I − δH][UCHC + UCCCYH ]
(39)

In many ways, the most important point at which to be able to sign (39) is at the intersection
of the stationary loci for I and H, which is the equilibrium point for the system. At this point (39)
becomes

∂I

∂H
=

[ρ+ 2δ][UCH + UCCYH ]− [UCCY
2
H + 2UCHYH + UCYHH + UHH ]

[ρ+ δ]p2IUCC
(40)

which, on the assumptions made above is assumed to be negative. When we put the terms involving
[I - δH] back in, because they are mixtures of positive and negative terms and are third derivatives
of the utility function, it can probably be assumed that they will not change the sign of the slope
of the stationary locus, even if they change its magnitude to some degree.
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Then to find the phase arrows for I, ∂İ/∂I or ∂İ/∂H can be evaluated close to the stationary
locus for I:

∂İ

∂I
=

[ρ+ δ]p2IUCC
p2IUCC

> 0 (41)

∂İ

∂H
=

[UCCY
2
H + 2UCHYH + UCYHH + UHH ]− [ρ+ 2δ][UCH + UCCYH ]

p2IUCC
> 0 (42)

The phase arrows for H can be found from the fact that
∂Ḣ

∂I
= 1, > 0 and

∂Ḣ

∂H
= −δ,< 0.

The phase diagram for the CRS case of the one-state variable consumption plus investment
version of the MGM is depicted in Figure 1. The phase arrows in the four regions defined by the
stationary loci and illustrative trajectories in each region that are consistent with the phase arrows
are shown in Figure 1. Obviously only trajectories that have the potential to reflect the individual’s
lifetime utility maximization decision are of interest. This means that the Pontryagin necessary
conditions must be satisfied at every point along any trajectory that is worth considering. Because
the phase diagram is derived using the first-order conditions, every trajectory in it is a potential
optimal trajectory. The trajectory that is actually chosen by the individual depends on the level of
health that she starts with and where she wants to end up.

Like virtually all optimal control problems, this one displays saddle-point dynamics. A saddle-
point equilibrium (E in Figure 1) is defined as the point of intersection of the stationary loci
(because at that point there is no intrinsic tendency for either I or H to change); there are only
two trajectories, referred to as the stable branches that converge to the equilibrium. There are
also two trajectories referred to as the unstable branches, which point directly away from the
equilibrium. Every other trajectory that could be drawn on the diagram, would initially move
toward the equilibrium but eventually turn around and diverge from it. This is why saddle-point
dynamics are generally taken to imply the uniqueness of solution trajectories.

The intersection of the stationary loci was referred to above as the equilibrium for the problem.
Normally in economic modeling, it is taken for granted that the system will either be at or be
converging to its equilibrium. In optimal control problems this is certainly true for most macro
economic applications and for models of economic growth. It is not however true for most micro-
economic problems. The reason for this is that it takes an infinite amount of time to reach the
equilibrium. Optimal control problems include among their necessary conditions what are referred
to as terminal transversality conditions. For an infinite horizon problem the transversality con-
ditions require that whatever the initial value of the state variable, the control variable must be
selected so that the optimal trajectory is the stable branch to the equilibrium. For a finite horizon
problem, like the one considered here, the transversality condition gives a different endpoint, so the
equilibrium point of the system will not be part of the individual’s optimal trajectory. It makes no
sense to assume that the optimizing individual is fully informed and forward looking with the one
minor exception that she assumes that she will live forever. Economies may live forever; individuals
within them do not.

For a finite horizon problem, there are a number of options for the terminal transversality
condition. One is that the stock of the state variable at T equals zero, meaning that the stock
of the state variable has been used up at the end of the horizon. This condition is often used in
models of accumulation of financial assets in the absence of a bequest motive. In some cases it
is not possible for the state variable to reach zero in finite time. In those cases the transversality
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Figure 1: An optimal path within the Grossman model

condition is ψ at T equals zero, meaning that there is no value to having another unit of the state
variable at the end of the problem. The third case is what is known as a fixed endpoint problem in
which a specific target value is chosen for the state variable at T. This would be the case in a model
for example, of financial asset accumulation when the individual has a target bequest motive. In
what follows it is assumed that HMIN is a fixed endpoint target. The implications of relaxing this
assumption are discussed in section VII.

A Lack of path dependence

One issue that has been raised is whether the MGM properly takes account of the way an individual’s
initial stock of health capital affects their later health investment decisions along with the related
issue of whether it adequately captures path dependency in health (Galama et al. 2012). These
are fundamentally dynamic questions dealing with the nature of the joint trajectory of health
investment I, and the stock of health H, that the model predicts for an individual.

Figure 1 includes a trajectory which is typical of those found in Grossman problems. The
individual is born healthy, in the sense that her initial H0 is above the level to which an infinite-
lived individual would tend over time. HMIN is taken to be a firm endpoint value of H and the
length of the time horizon, from t = 0 to t = T, is treated as fixed. The individual’s problem, then,
is to select a trajectory of I and H that will take her from her initial value of H to her terminal
value with an elapsed time of exactly T time units. This individual’s stock of health capital will
decline throughout her life, although not necessarily at a constant proportional rate. Initially she
chooses a low value of I, which allows her H to decline. As time passes and H falls she increases her
optimal I, slowing the rate of decline in H but not reversing it, so that her stock of health capital
continues to fall. After a certain time has elapsed - indicated on the diagram by the point at which
the trajectory cuts the stationary locus for I, she begins to let her I fall again, while H continues
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to fall towards HMIN . Looking at this trajectory in a lifetime perspective, it can be seen that
there are intervals during which I and H are moving in the same direction and intervals in which
they are moving in opposite directions. This relates to the point made earlier about the observed
relationship between I and H being conditioned by the fact that H is a durable good so that the
value of H in any period depends not just on the current value of I but also on the amount of H
which the individual had going into that period.

It is worth noting that the phase diagram has been drawn holding all of the exogenous variables
- pI and Y0, notably - unchanged, so that the observed relation between I, H and the exogenous
variables will change over time at a non-constant rate. To investigate the determinants of the
individual’s optimal I and H then, it is important to allow for the intrinsically dynamic nature
of the problem and to keep in mind the fact that, to the extent that there is a valid equilibrium
concept for this individual, it is represented by a trajectory, not a point.

Figure 2 shows the optimal trajectories for two individuals; one born with a high level of initial
health (H0HIGH), a second individual who is identical to the first with the sole exception that she
is born with a much lower initial stock of health (H0LOW ). The trajectory for the individual who
starts at H0HIGH is the one that was already discussed in the context of Figure 1. Given equation
(21), the initial value of H, and the terminal value of H, it can be seen that only one trajectory
satisfies the optimality conditions and fits the time horizon.

In Figure 2, it can be seen that compared to the first individual, the individual born with a
much lower initial stock of health (H0LOW ), according to the phase arrows, will tend to start with
a high value of I (point B) causing her stock of health to increase, and as her health increases she
can then reduce her level of I. Her stock of H continues to increase until her trajectory reaches the
Ḣ = 0 locus at which point both H and I will decrease until she reaches the end of the horizon.
The MGM predicts that it is optimal for the individual born with a low initial stock of health to
front-load her health investment. Contrary to the assertion made by Galama et al. (2012) then,
in a standard MGM with CRS, current health status at any value of t is indeed a function of the
individual’s initial level of health and her history of prior health investments made.

Zweifel (2013) says that the MGM predicts “...total investment in health should decrease at least
in the case of a serious illness when time to death suddenly becomes short, reducing the present
value of returns to investment. Neither prediction is borne out by the data”(pg. 361); meaning
that the model predicts a downward jump because of the shortened horizon.

In Figure 3, again consider an individual who is born with a high stock of health. She is initially
following the trajectory illustrated in Figure 2 but part way through the trajectory she is struck
by a significant unanticipated health shock (at point B) that takes her to HLOW . At HLOW it is
clear that the original level of health investment will no longer be optimal. In terms of a control
theory problem a shock like this to the state variable necessitates re-planning. Re-optimizing over
the remaining horizon (which may or may not have been affected by the shock), taking as the
initial stock of health for the new plan that stock with which she now finds herself to be endowed
at the instant after the illness struck. In Figure 3 the individual responds to this new lower health
state by dramatically increasing her level of investment to point C and by following a new optimal
trajectory for the remainder of the planning horizon. The amount of the upward jump will depend
on how long that remaining horizon is and in particular on whether the illness has also shortened
the individual’s life expectancy. The shorter the remaining horizon, the smaller the expected jump.

Thus from Figure 3 it can be seen that the model can indeed predict an upward jump in
investment, I, the size of which will depend on the length of the individual’s remaining horizon
and also on the magnitude of the cross-partial between health and consumption in the individual’s
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Figure 2: Low versus high initial health

utility function since that will play a key role in determining the opportunity cost of a jump in I.
Even in the context of the CRS version of the MGM it can be seen that individuals respond

to their particular health history. In Figure 3 it was assumed that the shock was completely
unanticipated. Elsewhere this problem has been investigated as a stochastic control problem within
the MGM framework and it was shown that the model can be modified to allow the individual
to take account of the probability of a major health shock when she is making her initial health
investment plans (Laporte and Ferguson (2007)). Even in that case however, once the shock has
occurred the individual re-optimizes14.

B Socio-economic gradient in health

Galama et al. (2012) argue that the MGM is not capable of predicting a socio-economic gradient
in health, specifically that it does not allow health to decline faster for individuals with lower socio-
economic status (SES). Here SES is taken to refer to income. Consider the case of two individuals
born with the same high level of initial health (HHIGH), one of which has a higher income at each
value of t than the other. It is assumed that for each individual, income is constant over time, so
this is not the case where health status can affect income, i.e. the Y(H) term is dropped. The two

14One reason that it might appear that the model presented here does not allow current decisions to depend on
past decisions is that the solutions to control theory problems are expressed as open loop rather than as feedback
solutions. As can be seen however, from the necessary conditions, the optimal value of I at any time does depend on
H and in the event of a shock to H the individual will re-plan taking account of how her realized H differs from the
value she had originally anticipated.
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Figure 3: Effect of an unanticipated health shock

individuals also have the same equation of motion for health so income differences do not mean
differences in intrinsic productivity when it comes to producing health. This approach is taken to
underscore the fact that an SES gradient can emerge even in a CRS pure consumption version of
the MGM and is not dependent on a healthier individual gaining an edge.

Recall (33), the condition that defines the stationary locus for H in the CRS case. This expression
will clearly not be affected by an increase in Y0. This is because it is biological rather than
behavioural - it says simply that for Ḣ = 0 it must be the case that the level of I is just sufficient to
replace the depreciation of H, at what ever the value of H happens to be. To use the terminology
of models of investment in physical capital, it must be that the level of gross investment is exactly
equal to the level of depreciation so that the level of net investment equals zero.

Equation (34) is the expression for İ =0. Setting Y = Y0 and at Ḣ = 0, i.e. at the intersection
of the stationary loci, (34) becomes:

İ =
(ρ+ δ)pIUC − UH

p2IUCC
(43)

And İ = 0 requires

[
[ρ+ δ]

pIUc
GI
− UH

]
(44)
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Differentiating (44) with respect to I and Y0, shows how I changes, holding H constant, when
Y0 increases, and hence moves vertically from the (I,H) point at which the stationary locus for I
cuts the stationary locus for H. In the CRS case GI = 1 and GII = 0 so (44) becomes:

[[ρ+ δ]pIUc − UH ] (45)

And differentiating gives:

∂I

∂Y0
=

UHC − [ρ+ δ]pIUCC
pIUHC − p2IUCC [ρ+ δ]

=
1

pI
> 0 (46)

which says that the stationary locus for I, at the point at which it cuts the stationary locus for
H, shifts up in response to an increase in Y0. Thus it can be argued that the stationary locus
for I will shift up in response to an increase in Y0. This in turn will tend to pull up all of the
trajectories for the individual whose income has increased upward - this can be seen most clearly in
the case of the stable branch to the equilibrium, when comparing the pre- and post-income increase
diagrams. Thus comparing two individuals, identical in preferences but one of whom has a higher
(exogenous) level of income than the other, one would expect the higher income individual’s phase
diagram to differ from that for the lower income individual in that the stationary locus for I will be
higher (but they will both have the same stationary locus for H) and the higher income individual’s
potential trajectories will all be shifted up relative to those of the lower income individual. These
two individuals are depicted in Figure 4.

Assuming that the two individuals both still have the same, exogenous value of T, and assuming
that they are born with the same initial H0 so that there is no income-related health difference at
birth, one would still expect the higher income individual to invest more in her health at every
value of t. In economic terms, this is because an increase in Y by increasing the amount of C that
can be consumed at any given value of I reduces the opportunity cost of increasing I.

As a result, the higher income individual’s H will decline more slowly than that of the lower
income individual, since Ḣ = I − δH and I is higher at every H. This means that, contrary to the
assertion of Galama et al. (2012), the MGM with CRS is perfectly capable of generating a case
in which higher income individuals’ health declines more slowly than does that of lower income
individuals. Whether this is the explanation of observed income-related gradients in health or not,
the claim that the MGM cannot yield such gradients is clearly incorrect.

C The health threshold

Galama and Kapteyn (2011) say that one criticism of the MGM that has not been satisfactorily
addressed is the fact that in empirical work I and H are generally found to be negatively related
whereas it is said the model predicts a positive relation (Zweifel 2012). They propose modifying the
basic MGM to allow for a corner solution in I i.e. I=0. They refer to this as Grossman’s missing
health threshold. The issue of the relationship between I and H has been addressed in section III.
This section sets up the Galama-Kapteyn model in the context of the one-state variable version of
the MGM to illustrate the effect of a non-negativity constraint on I using a phase diagram.

Galama and Kapteyn(2011) also set the problem up in the form of an optimal control problem.
They incorporate explicitly a non-negativity constraint on I. It is worth noting that in his original
1972 paper, Grossman discussed such a non-negativity constraint in some detail but his calculus
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Figure 4: High versus low SES

of variations based approach did not lend itself to a formal demonstration of the effects of this
assumption.

Allowance for the possibility of a non-negativity constraint on I in the MGM was outlined at the
outset of the paper, in which the λI term was introduced. When I is positive, λ will be equal to 0, so
to this point an interior solution has been assumed. To see the effect of allowing the non-negativity
constraint on I to be binding (13) can be modified as follows:

−pIUC + ψ + λ = 0 (47)

and rearranged to obtain:

ψ = pIUC − λ (48)

This necessary condition can be interpreted as MB equals MC where ψ (the shadow price of an
additional unit of H) is the MB term. When I is positive and λ is zero, the right hand side of (48) is
the MC of the investment necessary to yield an additional unit of H. When I=0, two things should
be noted about the right-hand side of (48). One is that C will now be equal to income, and the
other is that λ will be positive. The fact that λ must be subtracted from the RHS for the equality
to hold means that even when I=0, the LHS, which is MB of an additional unit of H, is less than
the MC. In other words, I=0 when the MB of another unit of health is so low that the first order
condition cannot be satisfied with equality without subtracting the λ term from the RHS. Given
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the definition of ψ, there are two cases where this might arise. One at the beginning of the planning
horizon, for someone who is born with what one might call perfect health, so that the benefit from
investing in health is virtually zero, which is the case Galama and Kapteyn(2011) appear to have
in mind. The other is the case where ψ is very low because the remaining time horizon is short so
that the payoff period to investing in health is too short to make it worth doing. This would occur
at the end of the planning horizon. Thus, it is quite possible that the optimal trajectory for an
individual could look like Figure 5.

Figure 5: The health threshold effect

VI Other considerations on the form of the production func-
tion

Zweifel (2012) raises an additional criticism that the MGM assumes “a fixed ratio between indi-
viduals health care expenditure and the cost of their own health enhancing efforts regardless of
their state of health” (pg. 677). This is a feature of the Grossman 1972 paper where he explicitly
assumes a CRS production function for health, although Zweifel discusses it in the context of a
Cobb-Douglas production function. In practice it would be a finding that was associated with any
homothetic health production function that had more than one input. Zweifel’s criticism then is
that the homotheticity of this isoquant map is unaffected by changes in the individual’s level of
H. This is an empirical rather than a theoretical issue. CRS is a common simplifying assumption
but is not a fundamental prediction of the MGM. It seems perfectly sensible that when the health
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production function has more than one input, their relative productivities will vary across isoquants.
There is another consideration that has received rather limited attention in the literature despite

the fact that Grossman gave quite a detailed discussion of it in his Journal of Political Economy
paper. While it relates to the nature of the production function and the productivity of I, it is
not a matter of returns to scale in the traditional sense. When talking about returns to scale in a
production function what is really referred to is an engineering, and not an economic issue. It deals
with the technical point of the rate at which output can increase by increasing all inputs in the
same proportion. Under CRS, if all inputs are doubled, output will double. The matter is probably
not quite as clear-cut as that summary suggests: it is probably safe to assume that output will
double if inputs are doubled by replication of existing production facilities. This is the argument
that underlies the common assumption that the industry-level supply function is horizontal in the
long run. On the other hand it is not always going to be the case that increasing all inputs by ten
per cent will increase output by ten per cent - this is the engineering issue of scalability. Whatever
conclusion is reached, however, the degree of returns to scale is a matter that relates to the impact
of increases in inputs on output.

In the case of the production function for health capital, though, there is an additional consid-
eration. This can best be summarized by referring to it as the issue of perfect health. Assume,
as Grossman does, that there is some technologically or physiologically determined upper value
of H, H∗, which cannot be exceeded. Set aside the issue of whether H∗ has been increasing over
the centuries or whether H∗ has always been fixed and society has been doing a better job of ap-
proaching it at both population and individual levels. Importantly for empirical implications, the
question of the relation, if any, between H∗ and some maximum possible length of life can also be
set aside. For purposes of the discussion here it can simply be assumed that at any time there exists
a maximum possible H and that if that H∗ changes it does so so slowly that it is reasonable to treat
it as exogenous as far as individuals in the population are concerned. As a first approximation, one
could introduce the issue of perfect health by writing the health production function G as:

G(I)[1−H/H∗], H ≤ H∗ (49)

Here the marginal product of I in the production of H becomes

GI(I)[1−H/H∗] (50)

so that as H approaches H∗ the marginal productivity of I declines at all levels of I. Again, this
has nothing to do with returns to scale in the sense in which that term is used in microeconomics
in general precisely because the effect being considered is independent of the level of I. It does,
however, come into the individual’s decision about the optimal level of I to choose. Under this
assumption, (13) the necessary condition for I becomes:

ψGI [1−H/H∗] = pIUC (51)

and totally differentiating (51) gives:

[ψGII [1−H/H∗] + p2IUCC ]∂I +GI [1−H/H∗]∂ψ − [pIUCH + ψGI(I)/H∗]∂H (52)

−pIUCC∂Y − [UC − pIUCC ]∂p = 0
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Rearranging (52) gives:

∂I

∂H
=

GI

H∗ψ + pIUCH

[1− H
H∗ ]ψGII + p2IUCC

(53)

which is still negative but whose magnitude now depends on the size of H relative to H∗. It is clear
from (53) that the closer H is to H∗ the smaller the MB of another unit of I relative to its MC,
regardless of the particular level of I: i.e. regardless of the assumptions made about the curvature
of the G(I) term.

In talking about a perfect, or upper, level of health the focus is on the production function, not
on the utility function. This does not imply a satiation level of H in the utility function and nor
does it imply a value of the co-state ψ (that as H approaches H∗) at which the MB of another unit
of I falls. This does however, identify another factor that would lead to lower investment in I as H
increases.

VII Death in the Grossman model

One key issue in the literature is whether the MGM would actually allow an individual to choose
to live forever. If it does, this would have to be regarded as a major theoretical weakness since
nobody as yet has successfully made that choice. This is an issue which goes all the way back to
Grossman’s original 1972 paper and which he said in Grossman (2000) had been of concern to him
at the time. Grossman’s solution in the 1972 paper was to have the rate of depreciation of health
capital increase at an increasing rate so that at a certain point even with CRS in the production
function, it became impossible to maintain H above HMIN . As the MGM has been written here, δ
has been constant. Grossman’s approach is not at all unreasonable if it is assumed that the human
body simply breaks down at some point at a rate faster than it is possible to repair it15. That would
seem to suggest that technological improvement in the health production function would still open
the possibility of immortality. However, to use the MGM as the basis for empirical investigation
of human health behavior it does not seem unreasonable to do what has been done in this paper
and assume the individual knows that their life is finite. In other words, to work with a fixed finite
horizon form of the problem.

Zweifel (2012) has argued that the assumption that the length of life is known is unreasonable.
It is certainly the case that people die at different ages. One possible approach is to define a
maximum possible length of life and allow people to choose their length of life up to that upper
limit. The transversality condition for an endogenous horizon is that the Hamiltonian equals zero at
the optimal end of life. This can clearly be a result of different choices made by different individuals,
conditional on their endowments. One can also consider a model in which there is an absolute upper
limit to T and the actual age at death is stochastic with the probability of death being a function
of the individual’s stock of health capital. This moves into the realm of stochastic control theory
and Ito’s Lemma, techniques that have been little used in health economics despite the fact that
health behaviours reflect decisions about inter-temporal optimization under uncertainty16.

15For a different take on the issue of why death happens, see Robson and Hillard (2007).
16Cropper(1977) presents a version of the MGM with uncertainty in relation to health where the health shocks are

characterized as being minor and having no effect on the stock of health capital (pg. 1277).
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The key issue associated with the way to make life finite is the implication of the method chosen
for end of life consumption of health care. This is a case however, where it is important to separate
the effects of two assumptions, one pertaining to the finite nature of the horizon and the other to
the implications of the assumption that is made about the rate of depreciation of health capital.
The most obvious combination of these assumptions would appear to be the case where there is an
upper bound to the length of life and the depreciation rate also increases at an increasing rate late
in life.

From a purely technical point of view making δ increase with age, given that age increases at
exactly the same rate as time passes, turns the optimal control problem from a one state variable to
a two state variable problem. To this point phase diagram analysis has been used to illustrate the
arguments being made about the workings of the MGM; unfortunately, it is extremely difficult, and
in many cases impossible to draw a phase diagram for a two-state variable problem. The nearest
one could come would be to use a two-stage optimal control problem in which delta was low during
the first stage and high during the second stage. This would not result in a discrete jump in I
at the point of passing from the first to the second stage since the transversality conditions for a
two-stage problem would make such a jump sub-optimal17. In terms of the phase diagram it is
clear that an increase in δ would rotate the stationary locus for H upward. That by itself would
be relatively easy to illustrate. Unfortunately, a change in δ will also shift the stationary locus for
I. The result of these two effects is that the overall effect on the optimal trajectory is ambiguous.
The most productive approach to introducing age-dependent depreciation rates would appear to be
theoretical simulation (see for example, Koka et al., 2014).

VIII Conclusion

This paper argued that the criticisms leveled in the literature at Grossman’s 1972 model do not in
fact constitute a serious indictment of its theoretical structure. It was shown that the MGM even
under the CRS assumption does not suffer from an indeterminacy problem and does indeed take
account of an individual’s history. The paper underscores the importance of distinguishing between
comparative static effects and dynamic effects. It can be seen that in empirical data, when looking
at changes in I and changes H between two consecutive points in time, the correlation between
changes in I and changes in H could be either positive or negative depending on where one is in the
individual’s lifetime trajectory.

In empirical work it is important to use estimating equations whose functional form takes explicit
account of the intrinsic dynamics of I and H since failing to do so is likely to bias estimates of the
comparative statics of the determinants of I. The key message of the Grossman framework is that
since individuals are forward looking, it is important that researchers think in terms not of a point
in time but rather in terms of an individual’s optimal trajectory.

In short, we argue that the criticisms that have been directed at the Grossman model are
themselves incorrect, and are the result of looking at a dynamic model through static eyes. It
is the contention of this paper that when the techniques of dynamic economic analysis which are
standard in other areas of economics, are applied to the Grossman model its status as the workhorse
of modeling individual health related behaviours is well justified.

17Wagstaff (1993) attempted to implement a two-stage process empirically with less than satisfactory results.
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