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Background

What are Instrumental Regression Methods?

‘Instrumental regression’ methods are econometric techniques
for estimating causal relationships on the basis of
observational (i.e. non-experimental) data

The problem arises when one (or more) of the explanatory
variables is known to be correlated with the stochastic error
process in the underlying data generating process (DGP)

When this is the case, standard regression methods (i.e. ones
that ignore this correlation) produce biased and inconsistent
estimates
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Historical Perspective

If ‘valid’ instruments exist (i.e. variables that are correlated
with the ‘endogenous’ explanatory variables but are
uncorrelated with the error term), then instrumental
regression methods may be used

The earliest solution to this problem in Econometrics is
Wright (1928) (cf Stock & Trebbi (2003))

Wright (1928, Appendix B) showed that instrumental
regression can be used to estimate the coefficient on an
endogenous regressor, something that e.g. ordinary least
squares regression cannot do

Instrumental regression has emerged as a central technique of
modern micro- and macroeconometrics
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Finite-Dimensional Simplifications

Applied researchers often presume that the functional forms of
the instrumental regression model (either single- or
multi-equation) are known (e.g. linear and additive)

‘Parametric’ estimation methods treat the model as fixed and
exact (i.e. ‘finite-dimensional’)

Nonparametric estimation methods treat the model as an
approximation that depends on the sample size (i.e.
‘infinite-dimensional’, cf Horowitz (2014))

Many practical problems require ‘nonparametric’ estimates
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Parametric Versus Nonparametric Instrumental Methods

Except in special cases, parametric and nonparametric
methods may deliver different estimates, confidence intervals,
and outcomes of hypothesis tests

Because parametric estimation assumes a fixed model that
does not depend on the sample size, parametric methods
typically indicate that the estimates are more precise than
they really are

Consequently, conclusions that are supported by a parametric
estimator may not be supported by a nonparametric estimator
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Identification

Let ϕ denote some ‘parameter’ of interest, which could be a
scalar, vector, or function (i.e. ϕ = ϕ(Z))

This parameter is ‘identified’ if it is uniquely determined by
the probability distribution from which the available data are
sampled

A trivial illustration would be, say, ϕ =
∫∞
−∞ y dF (y), the

population mean (i.e. provided that the population mean
exists, it is identified and can be consistently estimated by its
sample counterpart)

Strictly speaking, a parameter is identified (overidentified) if
there is a one-to-one (or many-to-one) mapping from the
population distribution to the parameter
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Continuous Identifying Mappings

For many popular parametric estimators (e.g. linear least
squares or linear instrumental regression) the parameter of
interest is a vector and the ‘identifying mapping’ is
‘continuous’

By ‘continuous’ we mean that small changes in the population
distribution produce only small changes in the identified
parameter

In such cases, the parameter can be consistently estimated by
replacing the unknown population distribution with a
consistent sample analog (e.g. the empirical distribution of the
data)
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Discontinuous Identifying Mappings

This approach (i.e. replacing the unknown population
distribution with a consistent sample analog) can fail if the
mapping that identifies the parameter of interest is
discontinuous

When the identifying mapping is discontinuous, the parameter
of interest ϕ cannot be estimated consistently by simply
replacing the population distribution of the data with a
consistent sample analog

This occurs because the estimated and true values of ϕ can
be very different even if the sample size is large enough to
make the difference between the sample and population
distribution negligibly small
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Ill-Posed Problems

Hadamard (1923) called a problem ‘well-posed’ if it has a
unique solution that depends continuously on the available
data

We say that an estimation problem is ‘ill-posed’ if the
identifying mapping is discontinuous in a way that prevents
consistent estimation of the parameter of interest by replacing
the population distribution of the data with a consistent
sample analog

We say that an estimation problem is an ‘ill-posed inverse
problem’ if the discontinuous identifying mapping is obtained
by inverting another mapping that is continuous
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Nonparametric Density Estimation

Nonparametric estimation of a probability density function
(‘PDF’) presents an ill-posed inverse problem and will
illustrate the problem nicely

Let F (x) ≡
∫ x
−∞ f(t) dt denote a cumulative distribution

function (‘CDF’) and f(x) ≡ dF (x)/dx denote the PDF

The nonparametric ‘empirical’ CDF is given by

Fn(x) =
1

n

n∑

i=1

1(Xi ≤ x),

where 1(A) is an ‘indicator function’ taking values 1 if A is
true, zero otherwise

Fn(x) is a uniformly consistent estimator of F (x)
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Example (The Empirical Distribution Function)
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Nonparametric Density Estimation

Although Fn(x) is uniformly consistent, it is a step function
with derivative taking values either 0 or ∞ (when
0 < f(x) <∞ i.e. is bounded) even as n→∞
Nonparametric estimation of f(x) is thus an ill-posed inverse
problem

That is, f(x) cannot be consistently estimated simply by
replacing F (x) with a consistent estimator such as Fn(x) in
f(x) = dF (x)/dx

For density estimation we adopt a ‘regularization’ approach
(i.e. we modify or “regularize” the identifying mapping) by
‘smoothing’ Fn(x), with ‘regularization parameter’ the
‘bandwidth’ h, as demonstrated below
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Nonparametric Density Estimation

Let the kernel smoothed CDF estimator be

F̂ (x) =
1

n

n∑

i=1

Φ

(
x−Xi

h

)

where Φ is e.g. the Gaussian CDF kernel, h a ‘bandwidth’

The kernel smoothed PDF estimator is

f̂(x) =
dF̂ (x)

dx
=

1

nh

n∑

i=1

φ

(
x−Xi

h

)

where φ = Φ′, e.g. the Gaussian PDF kernel

For consistent estimation of f(x) the bandwidth h must
vanish as n→∞ but not too quickly (nh→∞ as n→∞),
otherwise there is not enough regularization to overcome the
discontinuity
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Example (Ill-Posed Inverse Problem - Estimating
f(x) = dF (x)/dx)
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Example (Ill-Posed Inverse Problem - Estimating
f(x) = dF (x)/dx)
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Nonparametric Density Estimation

To summarize and cement ideas, we have the relationship

F (x) =

∫ ∞

−∞
f(t)1(t ≤ x) dt

The mapping from f(x) to F (x) is a continuous one (i.e.
small changes in f(x) produce small changes in F (x))

However, the converse is not true (i.e. the inverse mapping
from F (x) to f(x) given by dF (x)/dx is not a continuous
mapping)

Therefore replacing F (x) with a consistent estimator such as
Fn(x) and attempting to solve for f(x) can fail
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Nonparametric Density Estimation

The fact that the nonparametric model is infinite-dimensional
lies at the root of the problem

This is why nonparametric density estimation constitutes an
ill-posed inverse problem and requires a regularized solution

Kernel smoothing methods are one such approach to
overcoming this problem for nonparametric density estimation
(not the only one of course)

What does this have to do with instrumental regression you
may ask?

Quite a lot as it turns out (kernel smoothing methods will be
used to consistently estimate certain objects in the
‘regularized’ solution to avoid committing a ‘regularization
crime’)
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Nonparametric Instrumental Regression

Consider an instrumental regression model given by

Y = ϕ(Z) + U

where the parameter ϕ(Z) is unknown with Y,X ∈ R,
E(Y 2) <∞
Assume that ϕ(Z) and its derivative ϕ′(Z) are smooth and
square integrable w.r.t. the Lebesgue measure

The object of interest, ϕ(z), is no longer given by the
conditional mean of Y since E(U |z) 6= 0, i.e.

E(Y |z) = ϕ(z) + E(U |z) 6= ϕ(z)

Given a valid instrument W for which E(U |w) = 0, Darolles,
Fan, Florens & Renault (2011) recover ϕ(Z) as the solution to

E(Y |w) = E(ϕ(Z)|w)
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Nonparametric Instrumental Regression

ϕ(z) corresponds to any solution of the integral equation

E(Y |w) =

∫ ∞

−∞
ϕ(z)f(z|w) dz

The mapping from ϕ(z) to E(Y |w) is continuous provided
f(z|w) is bounded

However, the inverse mapping from E(Y |w) to ϕ(z) is
discontinuous, hence estimation of ϕ(z) constitutes an
ill-posed inverse problem

Note the similarity between the above and nonparametric
density estimation, another ill-posed inverse problem,

F (x) =

∫ ∞

−∞
f(t)1(t ≤ x) dt
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Regularization and Instrumental Regression

Regularization methods are techniques for removing the
discontinuity in the identifying mapping in ill-posed problems
in order to facilitate estimation (cf Horowitz (2014))

For the ill-posed nonparametric density estimation problem we
used smoothing as a regularization device

For nonparametric instrumental regression we use different
regularization methods (e.g.Tikhonov (1943) or Landweber
(1951)-Fridman (1956))

Alternative semi- and nonparametric approaches include use
of control functions (Newey, Powell & Vella (1999)) and sieve
approximations (Newey & Powell (2003), Horowitz (2011),
Chen & Pouzo (2012))
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Regularization Instrumental Regression

A regularized solution of the ill-posed instrumental regression
problem is a sequence of solutions of a sequence of well-posed
problems (called the ‘regularized problems’) such that the
sequence converges to the desired object given minimal
assumptions about ϕ(Z)

To avoid overly cumbersome notation, define

r ≡ E(Y |w),

Tϕ ≡ E(ϕ(Z)|w)

T is the conditional expectations operator, so with this
notation the instrumental relationship E(Y |w) = E(ϕ(Z)|w)
can be concisely written as r = Tϕ
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Landweber-Fridman Regularization

Given the identifying relationship r = Tϕ, we first take the
scalar product with respect to the adjoint operator T † and
constant c (T † = E(·|z) is the adjoint of T = E(·|w), c < 1))
then subtract this from ϕ and manipulate, i.e.

r = Tϕ, (E(Y |w) = E(ϕ(Z)|w))

cT †r = cT †Tϕ, (premultiply above by cT †)

ϕ− cT †r = ϕ− cT †Tϕ, (subtract above from ϕ)

ϕ = ϕ− cT †Tϕ+ cT †r (add cT †r, collect terms)

= ϕ+ cT †(r − Tϕ)

We then pursue an iterative scheme to solve this well-posed
regularized problem for ϕ
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Solving the Regularization Problem

The iterative scheme is of the form

ϕk = ϕk−1 + cT †(r − Tϕk−1),

which, using the original conditional expectation notation, is

ϕk(z) = ϕk−1(z) + cE [E(Y − ϕk−1(Z)|w)|z]

To obtained the regularized solution for ϕ(z), we estimate the
unknown conditional mean objects nonparametrically and
iterate

In order to begin, we require a starting value for ϕ(z), so we
could use e.g. ϕ̂0(z) = Ê(Y |z) (the nonparametric conditional
mean)
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Solving the Regularization Problem

Next, given ϕ̂0(z), we can compute Ê(Y − ϕ̂0(Z)|w)

Next, we can compute Ê
[
Ê(Y − ϕ̂0(Z)|w)|z

]

This gives us ϕ̂1(z) since

ϕ̂1(z) = ϕ̂o(z) + cÊ
[
Ê(Y − ϕ̂0(Z)|w)|z

]

Now we can use ϕ̂1(z) to compute ϕ̂2(z) in a similar manner
thereby obtaining the sequence of solutions ϕ̂0(z), ϕ̂1(z),
ϕ̂2(z),. . .

This process continues until some ‘stopping rule’, e.g.
‖(Ê(Y |w)− Ê(ϕ̂k(Z)|w))/Ê(Y |w)‖2, stabilizes from
iteration to iteration (the stopping rule is playing the role of
the regularization parameter)

Recent Advances in Nonparametric Instrumental Regression

Nonparametric IV Regression Illustration

Simulated Illustration

Let’s consider drawing a sample of size n = 1000 for the DGP used
by Darolles et al. (2011) which is given by

Example (DGP used by Darolles et al (2011))

Y = ϕ(Z) + U

Z = ρz,wW + V

U = ρu,zV + ε

where ρu,z = −0.5, ρz,w = 0.2, ϕ(Z) = Z3, and

W ∼ N(0, 1)

V ∼ N(0, 0.272)

ε ∼ N(0, .052)
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Example (Plot of Y versus (endogenous) Z)
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Example (Plot of (unobserved) U versus Z)
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Example (DGP (ϕ(Z)) and nonparametric Ê(Y |Z = z))
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Example (DGP (ϕ(Z)) and regularized nonparametric ϕ̂(Z))
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Example (Regularized solution (stopping rule))
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For further details on these methods, see Darolles et al.
(2011), Horowitz (2011), and Florens & Racine (2014a)

Consider a random sample taken from the 1995 British Family
Expenditure survey used in Blundell, Chen & Kristensen
(2007) to estimate an Engel curve

If Y is a household’s expenditure share on a good or service
and Z is the household’s total expenditure, then ϕ(Z) is an
Engel curve (Z and Y are jointly determined)

If income from wages and salaries is not influenced by
household budgeting decisions, then the household head’s
total earnings from wages and salaries can be used as an
instrument, W , for Z (Blundell et al. (2007))
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Example (Engel Curve for British Family Expenditure Data)
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Nonparametric Models and Instrumental Regression

Discontinuous identifying relations often arise when the
parameter of interest is a function rather than a
finite-dimensional quantity (such as a coefficient in a simple
parametric specification)

Infinite-dimensional nonparametric models give rise to
ill-posed inverse problems

Many economists prefer finite-dimensional parametric models
for their research

Economic theory, rarely, if ever provides parametric models

Economic theory does, however, provide shape constraints
(concavity, monotonicity etc.)

See Du, Parmeter & Racine (2013) and (Florens & Racine
(2014b)) for work on shape constrained nonparametric
(instrumental) regression
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Limitations of Instrumental Regression

Finding a good instrument (like achieving nirvana) is known
not to be an easy task (instruments, though correlated with
the endogenous regressor, might still be correlated with the
error process)

Even with a valid instrument, the instrument may be ‘weak’
(the degree of correlation with the endogenous predictor may
be low)

For nonparametric approaches, how to best choose smoothing
parameters remains an ongoing active area of research

We are not yet at the point where these methods are
anywhere near as complete as standard nonparametric
regression analysis, but these methods will be entering the
mainstream in the near future (lots to do but stay tuned!)
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Software Implementations

‘Beta’ versions of some functions exist in the R packages np

and crs (Hayfield & Racine (2008), Nie & Racine (2012))

See the functions npregiv and npregivderiv in the np

package (nonparametric kernel implementation)

See the functions crsiv and crsivderiv in the crs package
(semi- and nonparametric spline/sieve implementation)

These functions are quite general, allow for discrete and
continuous variables and multiple endogenous, exogenous, and
instruments

The 1995 British Family Expenditure survey data can be
found in both packages (Engel95)

The DGP underlying the simulated examples can also be
found in both packages (see e.g. ?npregiv or ?crsiv)
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Appendix: Parametric Instrumental Regression

Consider the finite-dimensional parametric model where we
assume that ϕ(Z) = Zβ, hence

Y = Zβ + U,

where Z and U are correlated, E(Y 2) <∞ and E(X2) <∞,
with instrument W such that E(W ′U) = 0, hence

E(W ′Y ) = E(W ′Z)β

Premultiplying by E(Z ′W )[E(W ′W )]−1 yields

E(Z ′W )[E(W ′W )]−1E(W ′Y ) = E(Z ′W )[E(W ′W )]−1E(W ′Z)β
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If the inverse matrices exist then

β =
{
E(Z ′W )

[
E(W ′W )

]−1
E(W ′Z)

}−1

E(Z ′W )
[
E(W ′W )

]−1
E(W ′Y ),

which identifies β

Furthermore β is a continuous function of the moments and
probability distributions of the r.h.s. random variables
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Appendix: Parametric Instrumental Regression

Given data, replacing unknown expectations with sample
averages is equivalent to replacing the unknown distribution of
(Y,Z,W ) with the empirical distribution of the data, hence

β̂IV =



n
−1

n∑

i=1

ZiW
′
i

[
n−1

n∑

i=1

WiW
′
i

]−1
n−1

n∑

i=1

WiZ
′
i





−1

× n−1
n∑

i=1

ZiW
′
i

[
n−1

n∑

i=1

WiW
′
i

]−1
n−1

n∑

i=1

WiYi

β̂IV is a consistent estimator for β in the parametric model
(but not for ϕ(Z) unless ϕ(Z) is in fact your parametric
guess, Zβ, a measure zero event)
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Appendix: Parametric Instrumental Regression

This works simply because using a linear parametric
specification for ϕ(Z) renders E(ϕ(Z)|W ) = E(W ′Z)β
finite-dimensional and non-singular, so we can solve a set of
(finitely many) linear equations

But if we treat this as an infinite-dimensional problem we are,
in effect, trying to solve a set of infinitely-many equations in
infinitely-many unknowns, so T = E(ϕ(Z)|w) is, roughly
speaking, a “nearly singular infinite-dimensional matrix”

For this reason, we adopt regularized solutions


