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Summary

Understanding the drivers of the data generating process behind healthcare
costs remains a key empirical issue. Much research to date has focused on
the prediction of the conditional mean cost, although this can potentially
miss important features of the distribution for policymakers. We conduct
a quasi-Monte Carlo experiment using English NHS inpatient data to com-
pare 14 approaches to modelling the distribution of healthcare costs: nine of
which are parametric in nature and have been proposed for fitting healthcare
costs and five less parametric methods designed specifically for construct-
ing a counterfactual distribution. Our results indicate that there is no one
method is clearly dominant and that there is a trade-off between bias and
precision. The method proposed by Chernozhukov et al. (2013), designed
specifically for constructing a counterfactual distribution, seems to perform
relatively well according to both metrics, ranked best in terms of bias, but
not in terms of precision. While this method and its related approaches show
considerable promise, in particular with larger sample sizes, they cannot be
used to extrapolate outside of the observed range of the sample.
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1 Introduction

There is a great deal of interest in modelling healthcare costs within a
number of areas of research aimed at informing healthcare policy through
understanding the drivers of healthcare expenditures. Econometric models
of healthcare costs have diverse and many uses including: to estimate key pa-
rameters for populating decision models in cost-effectiveness analyses (Hoch
et al., 2002); to adjust for healthcare need in resource allocation formulae
in publically funded healthcare systems (Dixon et al., 2011); to undertake
risk adjustment in insurance systems (Van de ven and Ellis, 2000) and to
assess the effect on resource use of observable lifestyle characteristics such as
smoking and obesity (Johnson et al., 2003; Cawley and Meyerhoefer, 2012;
Mora et al., 2014).

The distribution of healthcare costs poses substantial challenges for econo-
metric modelling. Healthcare costs are non-negative, highly asymmetric and
leptokurtic, and often exhibit a large mass point at zero. The relationships
between covariates and costs are likely to be non-linear. Basu and Manning
(2009) provides a useful discussion of these issues. The relevance and com-
plexity of modelling healthcare costs has led to the development of a wide
range of econometric approaches, and a description of commonly found ap-
proaches can be found in Jones (2011).

Much of the focus in comparisons of regression methods for the analysis
of healthcare cost data has centered on predictions of the conditional mean
of the distribution, E(y|X) (Deb and Burgess, 2003; Veazie et al., 2003; Basu
et al., 2004; Buntin and Zaslavsky, 2004; Gilleskie and Mroz, 2004; Manning
et al., 2005; Basu et al., 2006; Hill and Miller, 2010; Jones, 2011; Jones et al.,
2013, 2014). Applied researchers commonly model cost data using gener-
alised linear models (GLMs) (Blough et al., 1999). This framework offers a
relatively simple way to incorportate non-linearities in the relationship be-
tween the conditional mean and observed covariates. Furthermore, GLMs
allow for heteroskedasticity through a choice of a ‘distribution’ which spec-
ifies the conditional variance as a function of the conditional mean. GLMs
use pseudo-maximum likelihood estimation where the researcher is required
only to specify the form of the mean and the variance. Unlike maximum
likelihood estimation, where consistency requires that the whole likelihood
function is correctly specified, pseudo-maximum likelihood is consistent so
long as the mean is correctly specified with the choice of distribution affect-
ing the efficiency of estimates. Whilst the GLM framework has attractive
properties for researchers concerned only with E(y|X), there are important
limitations with this method. GLMs have been found to perform badly with
heavy-tailed data (Manning and Mullahy, 2001), and they implicitly impose
restrictions on the enitre distribution. For example, whatever distribution
is adopted, the skewness must be directly proportional to the coefficient of
variation and the kurtosis is linearly related to the square of the coefficient of
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variation (Holly, 2009). Whilst they may be well placed to estimate E(y|X)
(and V ar(y|X)), they cannot produce estimates of F (y|X) or Pr(y > k|X).

While the mean is an important feature of a distribution, which is es-
sential when the analysis is concerned with the expected total cost, it is
generally not the only aspect that is interesting to policymakers (Vanness
and Mullahy, 2007). Analysis based solely on the mean misses out poten-
tially important information in other parts of the distribution (Bitler et al.,
2006). As a result, a growing literature in econometrics has developed tech-
niques to model the entire distribution, F (y|X), thus ‘going beyond the
mean’ (Fortin et al., 2011). In health economics there is a particular em-
phasis on identifying individuals or characteristics of individuals that lead
to very large costs and there is a demand for empirical strategies to “target
the high-end parameters of particular interest” including tail probabilities,
Pr(y > k) (Mullahy, 2009).

In this paper we conduct a quasi-Monte Carlo experiment to compare
fit of the entire conditional distribution of healthcare costs using compet-
ing approaches proposed in the economics literature. We therefore consider
approaches which offer greater flexibility in terms of their potential appli-
cations by estimating F (y|X), imposing fewer restrictions on skewness and
kurtosis and allowing for a greater range of estimated effects of a covariate.

We first consider developments in the use of flexible parametric distribu-
tions for modelling healthcare costs (Manning et al., 2005; Jones et al., 2014),
which have been applied to healthcare costs principally in order to overcome
the challenge posed by heavy-tailed data. Unlike the GLM framework, these
models impose a functional form for the entire distribution with estimation
by maximum likelihood. As a result, an estimate of f(y|X) is produced,
which can then be used to calculate E(y|X), V ar(y|X)1 and Pr(y > k|X)
as required. By using flexible distributions, the restrictions on skewness and
kurtosis can be relaxed somewhat (McDonald et al., 2011), which is likely
to lead to a better fit of the full distribution (Jones et al., 2014).2

A related development is the use of finite mixture models (FMM), which
allow the distribution to be estimated as a weighted sum of distribution
components (Deb and Trivedi, 1997; Deb and Burgess, 2003). These are
also estimated using maximum likelihood, but are often referred to as semi-
parametric, since the number of components could, in principal, be increased
to approximate any distribution. In this paper we will group FMM with
the fully parametric distributions given the similarities to these approaches,
especially since we use a fixed number of components.

Other developments regarding the estimation of f(y|X) for healthcare
costs are less parametric, they typically involve dividing the outcome vari-

1Note that population moments may not be defined for all ranges of parameter esti-
mates (Mullahy, 2009).

2It is also possible to specify multiple parameters as functions of regressors to allow for
more complex covariate effects.
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able into discrete intervals and estimating parameters for each of these in-
tervals. Gilleskie and Mroz (2004) propose using a conditional density ap-
proximation estimator for healthcare costs to calculate E(y|X) and other
moments, where the density function is approximated by a set discrete haz-
ard rates. To implement this Jones et al. (2013) use an approach based on
Han and Hausman (1990), where F (y|X) is estimated by creating a cate-
gorical variable that describes the cost interval into which each observation
falls, and running an ordered logit with this as the dependent variable.
This implementation is slightly different from what is proposed by Gilleskie
and Mroz (2004), but has the advantage of being conceived in order to
fit F (y|X) and ties into a related literature on semi-parametric estimators
for conditional distributions (Han and Hausman, 1990; Foresi and Perac-
chi, 1995; Chernozhukov et al., 2013). While the ordered logit specification
used in the Han and Hausman (1990) method allows for flexible estimation
of the thresholds in the latent scale, methods such as Foresi and Peracchi
(1995) instead estimate a series of separate logit models. More recently,
Chernozhukov et al. (2013) propose that a continuum of logits should be es-
timated (one for each unique value of the outcome variable) to allow for an
even greater range of estimates for the effect of a covariate. In an application
to Dutch health expenditures, de Meijer et al. (2013) use the Chernozhukov
et al. (2013) method to decompose changes in the distribution of health
expenditures between two periods. The authors find that the effect of co-
variates varies across the distribution of health expenditures, which would
have been missed if analysis had focused solely on the mean. They also find
that pharmaceutical costs were growing mainly at the top of the distribution
due to structural effects, whereas growth in hospital care costs is observed
more in the middle of the distribution and can be explained by changes in
the observed determinants of expenditure.

The above methods seek to estimate the full distribution, by modelling
F (y|X) for different values of y (interval thresholds) and imposing varying
degrees of flexibility on the covariate effects for these. An alternative is
to construct F (y|X) through the inverse of the distribution function, the
quantile function qτ (X).3 We consider two methods which estimate a range
of quantiles separately as functions of the covariates to allow for flexibility
as to the estimated effects of each regressor across the full range of the dis-
tribution. The first was proposed by Machado and Mata (2005) and Melly
(2005) and uses a series of quantile regressions to estimate the full range of
quantiles across the distribution. Quantile regressions have been used where
the outcome variable was healthcare costs for analysing the varying effects
of race at different points of the distribution (Cook and Manning, 2009).
However we were unable to find any applications of the Machado and Mata
(2005) and Melly (2005) method to construct a complete estimate of F (y|X)

3τ ∈ (0, 1) denotes the quantile being considered.
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with healthcare costs as the outcome variable, although the applications in
the original papers were to wages, which share similar distributional charac-
teristics. Quantile functions can alternatively be estimated using recentered-
influence-function (RIF) regression (Firpo et al., 2009), where the outcome
variable is first transformed according to the recentered-influence-function
and then regression used to model the effects of covariates.

This paper provides a systematic comparison of parametric and distri-
butional methods4 for fitting the full distribution of healthcare costs using
real data in a quasi-Monte Carlo experiment. As such, it is novel in two
ways: firstly, it provides a methodology for comparing the distributional
fit of models which are neither nested/limiting cases nor estimated using
the same procedure, and secondly it is the first paper to compare com-
peting econometric approaches for modelling the distribution of healthcare
costs. We find that distributional methods demonstrate significant potential
in modelling tail probabilities, particularly with larger sample sizes where
the variability of predictions is reduced. Parametric distributions such as
log-normal, generalised gamma and generalised beta of the second kind are
found to estimate tail probabilities with high precision, but with varying
bias depending upon the cost threshold being considered.

The study design is described in the next section, followed by a detailed
description of the methods compared. Then we discuss the results, and place
these in the context of related research, some of the limitations of our study
and possible extensions for future work.

2 Methodology and Data

2.1 Overview

Rather than comparing competing approaches for estimating E(y|X),
which is the focus of most empirical work in this area (Mullahy, 2009), we
assess performance in terms of tail probabilities, Pr(y > k), for varying lev-
els of k to assess the fit of the entire distribution, F (y|X). We compare a
number of different regression methods, each with a different number of esti-
mated parameters. Since more complex methods may capture idiosyncratic
characteristics of the data as well as the systematic relationships between
the dependent and explanatory variables, there is a concern that better fit
will not necessarily be replicated when the model is applied to new data
(Bilger and Manning, 2014). To guard against this affecting our results we
use a quasi-Monte Carlo design where models are fitted to a sample drawn
from an ‘estimation’ set and performance is evaluated on a ‘validation’ set.
This means that methods are assessed when being applied to new data.5

4This term was used in Fortin et al. (2011).
5There are substantial precedents for using split-sample methods to evaluate different

regression methods for healthcare costs, for example Duan et al. (1983); Manning et al.
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Each method can be used to produce an estimate of the whole distribution
F (y|X) for each sample. We use the estimated parameters to produce a
counterfactual distribution given the covariates in the ‘validation’ set. Our
interest is in the survival function, Pr(y > k), and use round values of k to
assess the performance of each method, where the values of k are unknown
to the researcher at the point of estimating each method.

2.2 Data

Our data comes from the English administrative dataset the Hospital
Episode Statistics (HES)6 for the financial year 2007-2008. We have ex-
cluded spells which were primarily mental or maternity healthcare and all
spells taking place within private sector hospitals.7 The remaining spells
constitute the population of all inpatient episodes, outpatient visits and
A&E attendances that were completed within 2007-2008 for all patients
who were admitted to English NHS hospitals (where treatment was not pri-
marily mental or maternity healthcare). Spells are costed using tariffs from
2008-20098 by applying the relevant tariff to the most expensive episode
within the spell (where a spell can be thought of as a discrete admission).9

Our analysis is undertaken at the patient level and so we sum costed spells
for each patient to create the dependent variable, giving us 6,164,114 obser-
vations in total. The empirical density and cumulative distribution of the
outcome variable can be seen in Figure 1 and descriptive statistics are found
in Table 1.10

In order to tie in with existing literature on comparisons of econometric
methods for healthcare costs we use a set of morbidity characteristics which
is the same for each regression method. In addition, we control for age and
sex using an interacted, cubic specification, which leaves us with a set of
regressors similar to a simplified resource allocation formula where health
expenditures are modelled as a function of need proxied using detailed socio-
demographic and morbidity information (Dixon et al., 2011). In total we
use 24 morbidity markers, adapted from the ICD10 chapters (WHO, 2007),
which are coded as one if one or more spells occur with any diagnosis within

(1987).
6HES is maintained by the NHS Information Centre.
7This dataset was compiled as part of a wider project considering the allocation of

NHS resources for secondary care services. Since a lot of mental healthcare is undertaken
in the community and with specialist providers, and hence not recorded in HES, the
data is incomplete. In addition, healthcare budgets for this type of care are constructed
using separate formulae. Maternity services are excluded since they are unlikely to be
heavily determined by ‘needs’ (morbidity) characteristics, and accordingly for the setting
of healthcare budgets are determined using alternative mechanisms.

8Reference costs for 2005-2006, which were the basis for the tariffs from 2008-2009,
were used when 2008-2009 tariffs were unavailable.

9This follows standard practice for costing NHS activity.
10Costs above £10, 000 are excluded in these plots to make illustration clearer.
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N 6, 164, 114
Mean £2, 610
Median £1, 126
Standard deviation £5, 088
Skewness 13.03
Kurtosis 363.18
Minimum £217
Maximum £604, 701

% observations % of total costs

> £500 82.96% 97.20%
> £1, 000 55.89% 89.80%
> £2, 500 27.02% 72.35%
> £5, 000 13.83% 54.65%
> £7, 500 6.92% 38.67%
> £10, 000 4.09% 29.35%

Table 1: Descriptive statistics for hospital costs

the relevant subset of ICD10 chapters (during the financial year 2007-2008)
and zero otherwise.

To give some illustration of the features of the data conditional upon
these covariates we construct an index using these regressors and divide the
data from the ‘estimation’ set into five quantiles (quintiles) according to the
value of the index.11 For each quintile we display the empirical distribu-
tion of log-costs12 in Figure 2, and in particular pick out those that exceed
ln(£10, 000). It’s clear from Figure 2 that the conditional distributions of
log-costs (and thus costs) vary dramatically by quintile of covariates in terms
of their shape, range and number of high cost patients, with 17% of observa-
tions with greater annual costs than £10, 000 in the most morbid patients,
compared to a population average of 4.09% (and 0.14% in the least mor-
bid quintile). An analysis looking only at the mean of each quintile would
overlook these features of the data.

We also carry out a similar analysis, this time using untransformed costs
and dividing the ‘estimation’ set into 10 quantiles (deciles) of the linear
index of covariates, where we plot the kurtosis of each decile against their
skewness. Parametric distributions impose restrictions upon possible skew-
ness and kurtosis: one parameter distributions are restricted to a single
point (e.g. normal distribution imposes a skewness of 0 and a kurtosis of
3), two parameter distributions allow for a locus of points to be estimated,
and distributions with three or more parameters allow for spaces of possi-

11This is constructed by regressing cost against the regressors using OLS and taking the
predicted cost.

12A log-transformation is used to make the whole distribution easier to illustrate and
Pr(y > k) = Pr(ln(y) > ln(k)) since it is a monotonic transformation.
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Figure 1: Empirical density and cumulative distribution of healthcare costs
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index of covariates
Note: Taken from Jones et al. (2014) and adapted from McDonald et al. (2011). The dots shown

on Figure 3 were generated as follows: the data were divided into ten subsets using the deciles

of a simple linear predictor for healthcare costs using the set of regressors used in this paper.

Figure 3 plots the skewness and kurtosis coefficients of actual healthcare costs for each of these

subsets, the skewness and kurtosis coefficient of the full estimation sub-population (represented

by the larger circle with cross) and theoretically possible skewness-kurtosis spaces and loci for

parametric distributions considered in the literature.

ble skewness and kurtosis combinations. Figure 313 shows that the data is
non-normal and provides motivation for flexible methods since they appear
better able to model the higher moments of the conditional distributions of
the outcome variable analysed here. We haven’t represented the less para-
metric approaches used in this paper in this Figure, since they discretise
the distribution and/or estimate several models, and the effects on implied
skewness and kurtosis is not clear.

2.3 Quasi-Monte Carlo design

In order to fully exploit the large dataset at our disposal, before we
undertake analysis we randomly divide the 6,164,114 observations into two
equally sized groups: an ‘estimation’ set and a ‘validation’ set (each with

13Key for abbreviations: GB2 - generalised beta of the second kind, SM - Singh-
Maddala, B2 - beta of the second kind, GG - generalised gamma, LN - log-normal, WEI
- Weibull.
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3,082,057 observations). Because researchers using observational data from
social surveys typically have fewer observations in their datasets than are
present in our ‘estimation’ set, we draw samples from within the ‘estimation’
set. On these samples we estimate the regressions that will later be evalu-
ated using the ‘validation’ set data. In total we randomly draw 300 samples
with replacement: 100 samples of each size Ns (Ns ∈ 5,000; 10,000; 50,000),
where samples with Ns = 5,000 or 10,000 may be thought of as having a
similar number of observations as small to moderately sized datasets (Basu
and Manning, 2009). We estimate 14 methods using the outcome and re-
gressor data from each sample, where each method can be used to construct
a counterfactual distribution of costs F (y|X) (more details on each method
are found in the Empirical Models section). Then using all 3,082,057 ob-
servations in the ‘validation’ set, we use the covariates from the data (but
not the outcome variable) to construct F (y|X) for each method. Depend-
ing upon which method is being considered we can either directly obtain
Pr(y > k|X) which we then integrate out over values of X to produce an
estimate of Pr(y > k), or we can use F (y|X) which we integrate out over
values of X, to give F (y), to then estimate Pr(y > k). Once the estimate
of Pr(y > k) is produced for the ‘validation’ set, using either method, it
can be compared to the observed empirical proportion of costs in the data
that exceeds the threshold k.14 In this paper we choose round values for
k throughout the distribution of the outcome variable (numbers in brack-
ets correspond to % of population mean): k ∈ £500 (19%); £1,000 (38%);
£2,500 (96%); £5,000 (192%); £7,500 (287%); £10,000 (383%).15 Results
displayed look at performance across each replication for given method with
a given sample size. We construct a ratio of predicted to observed Pr(y > k)
and look at the average of this across all replications, as well as the vari-
ability of the ratio from replication to replication using the average absolute
deviation from the average computed ratio for that method, their standard
deviation and their range.

3 Empirical models

3.1 Overview

In total we compare the performance of 14 different estimators, which
we will describe in terms of two groups: parametric methods and distribu-
tional methods. First we describe each of the parametric distributions and

14It is worth noting that the practice of comparing observed versus empirical probabil-
ities forms the basis of the Andrews (1988) chi-square test, although this is designed for
use with parametric methods only, and as such is not implemented in this paper, where
we are interested in the performance of both parametric and semi-parametric approaches.

15Table 1 gives the proportion of observations in the population that exceed these thresh-
olds.

10



provide its conditional probability density function (f(y|X)), the equation
to calculate Pr(y > k|X), as well as the procedure for integrating over X in
order to produce an estimate of Pr(y > k). For the remaining 5 methods,
the procedure is more varied and complex, so we provide a detailed account
of the steps required to produce estimates of Pr(y > k) for all of these
distributions. Table 2 provides a key for the abbreviations used for each
method throughout the remainder of the paper.

GB2 LOG generalised beta of the second kind (log-link)
GB2 SQRT generalised beta of the second kind (

√
-link)

GG generalised gamma (log-link)
GAMMA two-parameter gamma (log-link)
LOGNORM log-normal (log-link)
WEIB Weibull (log-link)
EXP exponential (log-link)
FMM LOG two-component finite mixture of gamma densities (log-link)
FMM SQRT two-component finite mixture of gamma densities (

√
-link)

HH Han and Hausman
FP Foresi and Peracchi
CH Chernozhukov, FernndezVal and Melly (linear probability model)
MM Machado and Mata - Melly (log-transformed outcome)
RIF recentered-influence-function regression (linear probability model)

Table 2: Key for method labels

3.2 Parametric methods

All nine of the parametric approaches that we consider, including two
variants of finite mixture models16, are estimated by specifying the full con-
ditional distribution of healthcare costs using between one and five param-
eters. While it is possible in principle to allow shape parameters to vary
with covariates, preliminary work showed that this produced unreliable and
uninterpretable results, so in all cases we only specify location parameters
as functions of covariates. This means that all models have only one pa-
rameter depending upon covariates, except FMM LOG and FMM SQRT
which have scale parameters in each component that are allowed to vary
with covariates. All other parameters are estimated as scalars. In Table
3 we give the conditional probability density function and the conditional
survival function for each model we compare.

16These are elsewhere considered to be semi-parametric, since the number of components
can vary, but we fix the number of components as two, meaning that they are essentially
parametric.
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Model f(y|X) = Pr(y > k|X) =

GB2 LOG ayap−1

exp (Xβ)apB(p,q)[1+(
y

exp (Xβ)
)a](p+q)

1− IZ (p, q)* where z =
(

k
exp (Xβ)

)a
GB2 SQRT ayap−1

(Xβ)2apB(p,q)[1+(
y

(Xβ)2
)a](p+q)

1− IZ (p, q)* where z =

(
k

(Xβ)2

)a
GG κ

σyΓ(κ−2)

(
κ−2

(
y

exp (Xβ)

)κ/σ)κ−2

exp

(
−κ−2

(
y

exp (Xβ)

)κ/σ)
if κ > 0: 1− Γ

(
z;κ−2

)
** if κ < 0: Γ

(
z;κ−2

)
** where z = κ−2

(
k

exp (Xβ)

)κ/σ
GAMMA 1

yΓ(κ−2)

(
κ−2

(
y

exp (Xβ)

))κ−2

exp
(
−κ−2

(
y

exp (Xβ)

))
κ > 0: 1− Γ

(
z;κ−2

)
** if κ < 0:Γ

(
z;κ−2

)
** where z = κ−2

(
k

exp (Xβ)

)
LOGNORM 1

σy
√

2π
exp

(
−(ln y−Xβ)2

2σ2

)
1− Φ

(
ln k−Xβ

σ

)
WEIB 1

σy

(
y

exp (Xβ)

) 1
σ exp

(
−
(

y
exp (Xβ)

) 1
σ

)
exp

(
−
(

k
exp (Xβ)

) 1
σ

)
EXP 1

exp (Xβ)

( −y
exp (Xβ)

)
exp
(
− k

exp (Xβ)

)
FMM LOG

∑2

j
πj

y
αj

yΓ(αj) exp (Xβj)
αj exp

(
−
(

y

exp (Xβj)

)) ∑2

j
πj (1− Γ (z;αj))*** where z = k

exp (Xβj)

FMM SQRT
∑2

j
πj

y
αj

yΓ(αj)(Xβj)
2αj

exp

(
−
(

y

(Xβj)
2

)) ∑2

j
πj (1− Γ (z;αj))*** where z = k

(Xβj)
2

*where IZ (p, q) = 1
B(p,q)

∫ z
0

tp−1

(1+t)p+q
dt is the incomplete beta function ratio. **where Γ

(
z;κ−2

)
= 1

Γ(κ−2)

∫ z
0 t

(κ−2−1) exp (−t)dt.
***where Γ (z;αj) = 1

Γ(αj)

∫ z
0 t

(αj−1) exp (−t)dt.

Table 3: Forms of density functions and survival functions for parametric distributions
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The generalised beta of the second kind17 is a four-parameter distribution
that was applied to modelling healthcare costs by Jones (2011) specifying
the location parameter as a linear function of covariates using software de-
veloped by Jenkins (2009). Jones et al. (2014) estimated the distribution
with a log-link (GB2 LOG) making it more comparable with commonly used
approaches. For example with this specification GG as proposed by Man-
ning et al. (2005) becomes a limiting case of GB2 LOG. Jones et al. (2013)
also compared GB2 SQRT as well as GB2 LOG against a broad range of
models, finding that the GB2 SQRT performed particularly well in terms of
accurately predicting mean individual healthcare costs. GG has been com-
pared more extensively in terms of predicting mean healthcare costs, having
been found to out-perform a GLM log-link with gamma-distribution in the
presence of heavy tails using simulated data (Manning et al., 2005), and a
number of models within the GLM framework when a log-link is appropri-
ate using American survey data; the Medical Expenditures Panel Survey
(Hill and Miller, 2010). GB2 LOG, GG and LOGNORM were compared
in Jones et al. (2014), with some indication that GB2 LOG better fits the
entire distribution with lower AIC and BIC, although LOGNORM better
predicted tail probabilities associated with the majority of high costs con-
sidered. We also consider further special cases of GG (and GB2 LOG) with
two parameters: GAMMA and WEIB, and with one parameter: EXP.

Finite mixture models have been used in health economics in order to
allow for heterogeneity both in response to observed covariates and in terms
of unobserved latent classes (Deb and Trivedi, 1997). Heterogeneity is mod-
elled through a number of components, C, each of which can take a different
specification of covariates (and shape parameters, where specified), written
as fj(y|X), and where there is a parameter for the probability of belonging
to each component, πj . The general form of the probability density function
of finite mixture models is given as:

f(y|X) =
C∑
j

πjfj(y|X) (1)

We use two gamma distribution components in our comparison.18 In one
of the models used, we allow for log-links in both components (FMM LOG),
and in the other we allow for a square root link (FMM SQRT). In both, the
probability of class membership is treated as constant for all individuals.
Unlike the other parametric methods, this approach can allow for a multi-
modal distribution of costs. In this way, finite mixture models represent
a flexible extension of parametric models (Deb and Burgess, 2003). Using

17Also known as generalised-F, see Cox (2008).
18Preliminary work showed that models with a greater number of components lead to

problems with convergence in estimation. Empirical studies such as Deb and Trivedi
(1997) provide support for the two components specification for healthcare use.
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increasing numbers of components, it is theoretically possible to fit any
distribution, although in practice researchers tend to use few components
(two or three) and achieve good approximation to the distribution of interest
(Heckman, 2001).

Once we have obtained estimates of location parameters (all βs for each
regressor) and shape parameters for each distribution, these are stored in
memory and then used to generate estimates of Pr(y > k|X), where values
for X are the observed covariates in the ‘validation’ set. These estimated
conditional tail probabilities will vary across each possible combination of X,
and hence individual i, and so we take the average in order to ‘integrate out’
these to provide us with a single estimate of Pr(y > k) for each method and
replication, which can be compared to the proportion of costs empirically
observed to exceed k. We then take the average across all replications of
Pr(y > k) for each method in order to assess bias and analyse the variability
across replications as an indicator of precision.

3.3 Distributional methods

3.4 Methods using the cumulative distribution function

Of the remaining five methods that we compare, three involve estimation
of the conditional distribution function and two operate through the quan-
tile function. First we consider the methods which estimate the conditional
distribution function F (y|X). Han and Hausman (1990) adopts a propor-
tional hazards specification, where the baseline hazard is allowed to vary
non-parametrically across DHH intervals of a discretised continuous out-
come variable. The logarithm of the integrated baseline hazard for each of
the DHH−1 intervals (one is arbitrarily omitted for estimation) is estimated
as a constant δDHH . The effects of covariates are estimated using a partic-
ular functional form, which is typically linear. This approach is similar to
the semi-parametric Cox proportional hazard model (Cox, 1972), but differs
in that the baseline hazard is not regarded as a nuisance parameter and is
better suited to data with many ties of the outcome variable (or in the case
of a discrete outcome). In order to implement this method, we construct a
categorical variable for each observation, indicating the interval into which
the value of the outcome variable falls. This is then used as the dependent
variable in an ordered logit regression against the covariates. The cut-points
are estimates of the baseline hazard within each interval δDHH . The authors
argue that given a large sample size, finer intervals should improve the ef-
ficiency of the estimator, without providing guidance on a specific number
of intervals to be used. As a result we carried out preliminary work to es-
tablish the largest number of intervals that could be used for each sample
size whilst maintaining good convergence performance,19 which resulted in a

19This was taken to mean that the model converges at least 95 times out of the 100
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maximum of 33 intervals for sample sizes 5,000 and 10,000, and 36 intervals
for a sample size of 50,000.

Foresi and Peracchi’s (1995) method is similar to Han and Hausman’s
(1990) in that it divides the data into a set of discrete intervals. Rather than
using an ordered logit specification, Foresi and Peracchi (1995) estimate a
series of logit regressions. For each upper boundary of the DFP −1 intervals
(the highest value interval is excluded), an indicator variable is created which
is equal to one if the observation’s observed cost is less than or equal to the
upper boundary, and zero otherwise. These are then used as dependent
variables in DFP −1 logit regressions each using the full set of regressors. In
their application to excess returns in their paper they use zero, as well as the
10th, 15th, 20th, ... , 80th, 85th and 90th percentiles as boundaries. While
we do not have information on patients with zero costs in our dataset, we
base our intervals on their specification of the dependent variables by using
the 5th, 10th, 15th, ... , 85th, 90th and 95th percentiles (vigiciles).

The third approach that we compare is an extension of Foresi and Per-
acchi (1995) and is described in Chernozhukov et al. (2013). The crucial
difference between the methods is that Chernozhukov et al. (2013) argue
that a logit regression should be used for each unique value of the outcome
variable. A continuum of indicator variables needs to be generated and then
regression models are used to construct the conditional distribution func-
tions for each value. Given the computational demand of this approach, and
lack of variation in the indicator variables at low and high costs, de Meijer
et al. (2013) use linear probability models in place of logit regressions. We
also adopt this approach in our comparison, since preliminary work showed
that, where it was possible to estimate both logit and linear probability
models, there was little difference between the methods.

All of these methods are similar in that they can produce estimates of
Pr(y > k ∗ |X), where k∗ represents one of the boundaries of the inter-
vals generated using either Han and Hausman (1990) or Foresi and Peracchi
(1995), or any cost value observed in the sample when implementing Cher-
nozhukov et al. (2013). Since models are estimated without knowing what
thresholds (k) the policymaker might be interested in, it is not always the
case that k∗ = k. Therefore, for all three methods described above, we use
a weighted average of Pr(y > k ∗ |X) for the nearest two values of k∗ to k
when k∗ 6= k. Our weight is based on a simple linear interpolation:

Pr(y > k|X) = Pr(y > k ∗a |X) +

(
k − k∗a
k ∗b −k∗a

)
(Pr(y > k ∗b |X)− Pr(y > k ∗a |X)) (2)

where k∗a and k∗b represent the thresholds analysed in estimation closest
below and closest above k, respectively.20

samples.
20This should work well when there are a large number of k∗ spaced throughout the
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Since we end up with an estimate for each observation of Pr(y > k|X),
we carry out the same procedure as with the parametric distributions. This
means that we take the average of Pr(y > k|X), thus ‘integrating out’ over
all possible combinations of X and giving us an estimate of Pr(y > k) to be
compared against the empirical proportion.

3.5 Methods using the quantile function

Machado and Mata (2005) propose a method for constructing a counter-
factual distribution based on a series of quantile regressions using the logged
outcome variable. They suggest that a quantile (τ) is chosen at random by
drawing from a uniform probability distribution between zero and one. Af-
ter running the quantile regression for the drawn value, the set of estimated
coefficients is used to predict the quantile given the covariate values observed
for a randomly selected observation. The authors repeat this process is re-
peated 4500 times with replacement, generating a full counterfactual distri-
bution. The theoretical motivation for this procedure is that each predicted
quantile based on qτ (X) represents a draw from the conditional distribu-
tion of healthcare costs (f(y|X)). Therefore drawing a random observation
and forecasting qτ enough times with random τ effectively integrates out X.
Running such a large number of quantile regressions is computationally ex-
pensive, and so Melly (2005) suggest running a regression for a fixed number
of quantiles spread over the full range of the distribution, e.g. for each per-
centile, rather than drawing a quantile at random. We use the Melly (2005)
approach for the MM method, running quantile regressions for each per-
centile on the ‘estimation’ set, after log-transforming the outcome variable,
and randomly choose one of these quantiles to forecast for each observation
in the ‘validation’ set.21 Once this has been done, the forecasted values rep-
resent the counterfactual distribution of healthcare costs belonging to the
‘validation’ set. Therefore to produce an estimate of Pr(y > k) we observe
the proportion of the observations in the counterfactual distribution that
exceed k.

Another method which estimates quantiles of the distribution is devel-
oped by Firpo et al. (2009), which employs recentered-influence-function
regressions. For a given observed quantile (qτ ), a recentered-influence-
function (RIF) is generated, which can take one of two values depending
upon whether or not the observation’s value of the outcome variable is less
than or equal to the observed quantile:

distribution. When interested in high values of k this linear interpolation may be inap-
propriate if there are few high values of k∗, given the often large distances between a high
cost and the next highest observed cost.

21The prediction is exponentiated to achieve the quantile of the distribution of the levels
of healthcare costs.
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RIF (y; qτ ) = qτ +
τ − 1 [y ≤ qτ ]

fy (qτ )
(3)

Here, qτ is the observed sample (τ) quantile, 1 [y ≤ qτ ] is an indicator
variable which takes the value one if the observation’s value of the outcome
variable is less than or equal to the observed quantile and zero otherwise,
and fy (qτ ) is the estimated kernel density of the distribution of the outcome
variable at the value of the observed quantile. The recentered-influence-
function is then used as the dependent variable in an OLS regression on the
chosen covariates, which effectively constitutes a rescaled linear probability
model. These estimated coefficients can then be used to predict the quantile
being analysed for a given observation’s covariates. Following the same
thought process as Machado and Mata (2005) and Melly (2005), predictions
based on qτ (X) represent a draw from f(y|X). This means that we can use
the estimated quantile functions to predict a counterfactual distribution in
the same way for the RIF method as we do for the MM method.22

4 Results

When analysing the performance of the methods, we calculate a ratio of
the estimated Pr(y > k) to the actual proportion of costs in the ‘validation’
set observed to exceed the threshold value k (see Table 4). Using a ratio
allows for greater comparability when looking at performance at different
thresholds. We will look at the average ratio across replications (with meth-
ods estimated on different samples drawn from the ‘estimation’ set23) as
well as the variability of the ratios. The former indicates the bias associated
with each method at a given k, while the latter indicates precision of the
method. First we will look at results across methods for a given sample
size and threshold cost value: Ns = 5, 000 and k = £10, 000.24 Second
we consider performance for a given sample size, with a range of values for
the threshold cost value, since different methods may be better at fitting
different parts of the distribution of healthcare costs: Ns = 5, 000 and (k ∈
£500; £1,000; £2,500; £5,000; £7,500; £10,000). Lastly performance at
different sample sizes is evaluated at a given threshold cost value: (Ns ∈
5,000; 10,000; 50,000) and k = £10, 000.

In Figure 4 we present the performance of the 14 methods in predicting
the probability of a cost exceeding £10,000 in the validation set, when sam-

22We calculate the recentered-influence-function using the level of costs and so no re-
transformation is required unlike when using MM.

23Three samples were discarded when Ns = 5, 000, due to being unable to form the
categorical variable for HH. Only one sample was discarded when Ns = 10, 000 and Ns =
50, 000.

24We choose these values of Ns and k since they are the smallest and most challenging
sample size and the largest and most economically interesting threshold value, respectively.
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k % observations in ‘validation’ set k

£500 82.93%
£1, 000 55.89%
£2, 500 27.04%
£5, 000 13.84%
£7, 500 6.94%
£10, 000 4.10%

Table 4: Actual empirical proportion of observations greater than k in the
‘validation’ set

ples with Ns = 5, 000 observations are used. The bars indicate the ratio of
estimated to actual probability, and the capped spikes indicate the range of
ratios across all of the replications. A ratio of one represents a perfect fit,
i.e. the method correctly predicted that 4.10% of observations would exceed
£10,000.

From Figure 4, it is clear that performance of the methods is varied both
in terms of bias (the point - the average ratio) and precision (the variability
of ratios as depicted by the capped spikes showing the range). There is not
a clear pattern in terms of parametric versus distributional methods, since
in both groups there are methods where the average ratio is seen to be near
the desired value of one, as well as methods in both groups where the range
of computed ratios does not contain one. In terms of bias, the best method
is CH with an average ratio of almost exactly one. It appears that this is not
the most precise method for k = £10, 000, however, with a range of ratios:
0.82 − 1.14 , that is the fifth largest of all methods compared (the largest
belongs to FMM SQRT). To more clearly represent the tradeoff between
bias and precision, see Table 5, which gives the rankings of each method
in terms of bias (how far the average ratio is away from one), the range of
ratios and also the standard deviation of ratios.

From Table 5 it can be seen that three of the parametric distribu-
tions: GB2 SQRT, GG and LOGNORM, demonstrate significant potential
in terms of the variability of their predictions as the three methods with the
lowest standard deviations of ratios. MM performs consistently well across
all three measures of performance, especially when variability is measured
by the range of ratios, although the standard deviation is still among the
five lowest of methods compared. From these results it’s unclear as to which
method is the best for forecasting costs greater than £10,000, since there is
no outright winner over the three metrics.

Whilst the results outlined previously give some indication of the meth-
ods’ abilities to forecast high costs, we are interested in the performance
of the regression methods at all points in the distribution. For this reason
we carry out a similar analysis across a range of cost threshold values. To
present these results, once again we plot the average ratio and the range of
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Figure 4: Performance of methods predicting the probability of a cost ex-
ceeding £10,000 at sample size 5,000

ratios across the replications. The results presented in Figure 5 are under-
taken using samples with 5,000 observations.
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Method Bias rank Range rank Standard deviation rank

GB2 LOG 5th 6th 6th
GB2 SQRT 12th 5th 3rd

GG 9th 4th 2nd
GAMMA 4th 11th 11th
LOGNORM 11th 1st 1st
WEIB 7th 12th 12th
EXP 10th 9th 8th

FMM LOG 3rd 13th 14th
FMM SQRT 8th 14th 13th

HH 6th 7th 9th
FP 13th 3rd 4th
CH 1st 10th 10th

MM 2nd 2nd 5th
RIF 14th 8th 7th

Table 5: Rankings of methods based on threshold of £10,000 at sample size
5,000
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Figure 5: Performance of methods predicting the probability of costs exceeding various thresholds at sample size 5,000
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There is a clear pattern in Figure 5 showing that the higher the cost
threshold being considered, the greater the variability in ratio of estimated
to actual probability. Besides this, the way in which performance varies
across different thresholds, including by how much variability increases with
higher thresholds, is different for all methods.

Beginning with the parametric distributions, with log-links, there seems
to be little difference in the performance of GB2 LOG and GG, except for
that GB2 LOG performs slightly better at the higher costs considered in
terms of bias. Looking at the gamma-type models, LOGNORM demon-
strates potential in terms of producing precise estimates of tail probabilities
if not in terms of bias. Since FMM LOG represents a two-component ver-
sion of GAMMA, comparing the performance of these methods provides
some insight into the returns from using more complex mixture specifica-
tions. The pattern of performance at different thresholds is quite similar
for these, and the main difference seems to be that FMM LOG produces
more variable estimates, especially at low cost thresholds. WEIB and EXP
seem to perform similarly, with high variability forecasts. It is interesting
to note that the

√
-link methods differ from their log-link counterparts, i.e.

comparing FMM SQRT with FMM LOG and GB2 SQRT with GB2 LOG,
mainly through worse forecasts at the higher costs.

There is considerable variation in performance between the distributional
methods. The methods that use the cumulative distribution function seem
to vary predominantly according to the number of intervals that are used
as opposed to the specification for predicting interval membership. CH is
practically unbiased for all cost thresholds, which illustrates the strength of
this method, in forecasting Pr(y > k) for a range of values of k. As pointed
out earlier, though, the variability of the forecasts across replications is
larger than the majority of other methods considered in this paper. It seems
therefore that much of the bias in HH and FP stems from when k∗a and
k∗b are not close to the value of k being investigated, which is more likely
to be the case with FP than with HH, since FP has fewer intervals (and is
highly unlikely using CH - in our application). This is particularly clear with
k = £10, 000, since with HH and FP in this case k∗b will often be the highest
observed cost in the sample. When this occurs, the linear interpolation that
we employ is likely to lead to an overestimation of the forecasted probability
(see equation 2 for details). For these three methods the variability of ratios
is roughly similar, but when looking also at the methods using the quantile
function, it is clear that MM offers an improvement upon the variability,
although its performance in terms of bias varies across values of k. RIF
seems to perform badly both in terms of bias and precision.

Finally, we look into how our analysis is affected by the number of obser-
vations that are present in the drawn samples. To do this, we return to the
style of graph that was produced for Figure 4, but illustrate performances
for the three sample sizes analysed (Ns ∈ 5,000; 10,000; 50,000). The results

22



.6
.8

1
1.

2
1.

4
GB2_

LO
G

GB2_
SQRT

GG

GAM
M

A

LO
GNORM

W
EIB

EXP

FM
M

_L
OG

FM
M

_S
QRT

HH FP CH
M

M RIF

Pr(y>£10,000): sample size 5,000

.6
.8

1
1.

2
1.

4

GB2_
LO

G

GB2_
SQRT

GG

GAM
M

A

LO
GNORM

W
EIB

EXP

FM
M

_L
OG

FM
M

_S
QRT

HH FP CH
M

M RIF

Pr(y>£10,000): sample size 10,000

.6
.8

1
1.

2
1.

4

GB2_
LO

G

GB2_
SQRT

GG

GAM
M

A

LO
GNORM

W
EIB

EXP

FM
M

_L
OG

FM
M

_S
QRT

HH FP CH
M

M RIF

Pr(y>£10,000): sample size 50,000

Figure 6: Performance of methods predicting the probability of a cost ex-
ceeding £10,000 at all sample sizes

are therefore only for one value of k, but results at other values followed a
similar pattern.

From Figure 6 we can see that there is a clear effect of sample size on
the performance of the regression methods fitting the whole distribution.
Having more observations does not particularly affect bias of each method,
but, as expected, it reduces the variability of the estimates. This therefore
means that methods such as CH perform relatively better at bigger sample
sizes since it remains unbiased, but forecasts costs with increased precision.

5 Discussion

The results of this paper are the first to provide a comparative assess-
ment of parametric and distributional methods designed to estimate a coun-
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terfactual distribution, and different to most studies concerning econometric
modelling of healthcare costs where performance has largely been judged on
the basis of the ability to predict conditional means. Limited existing re-
search compares parametric distributions (but not distributional methods)
against one another for predicting tail probabilities as well as in-sample
fit of the whole distribution based on log-likelihood statistics (Jones et al.,
2014). The analysis presented here builds on this work with a range of
thresholds for tail probabilities as well as a broader range of parametric dis-
tributions including mixture distributions and models with a

√
-link as well

as those with a log-link. There is considerable variation in the best perform-
ing parametric distributions according to the specific tail probability being
considered. When considering costs that exceed £10,000, FMM LOG is the
least biased parametric method, but is the most imprecise of all methods
considered. At other thresholds, the distribution with the best fit on aver-
age varies, for example it is WEIB among parametric distributions for costs
that exceed £7,500. This means that the preferred parametric distribution
would depend upon the decision-maker’s loss function. Some distributions
are particularly imprecise at all tails investigated, notably the mixture mod-
els: FMM LOG and FMM SQRT as well as some of the more restrictive
distributions: GAMMA, WEIB and EXP. LOGNORM is the most precise
and thus demonstrates its potential for modelling the whole distribution of
costs. Whilst other papers have focused on the importance of the link func-
tion, which seems to have a large impact on performance when it comes to
predicting mean healthcare costs (see for example Basu et al., 2006), this
paper finds that when we are concerned with predicting tail probabilities
the link function is less of an issue than are the distributional assumptions
more generally.

The distributional methods show promise for modelling the full distribu-
tion of healthcare costs. In particular, CH is practically unbiased in terms
of all forecasted tail probabilities considered. The related methods of FP
and HH also perform well in terms of bias, but not when considering costs
that exceed £10,000, because this is likely to fall in the highest quantile of
costs in either method. CH is better placed to model this tail probability,
since each unique value of costs that is encountered in the sample is used
as the basis for an indicator variable for a separate regression, and using a
linear probability model does not require variation across all covariates for
each value of the dependent variable. At the smallest sample size of 5,000
observations, these three methods exhibit highly imprecise forecasted prob-
abilities, but this becomes less of an issue at larger sample sizes where the
variability was lower for all 14 methods. MM delivers better precision, but
its performance on average varies across the different tail probabilities. RIF
appears to be the worst among the distributional methods for this data and
specification.

For our application, CH demonstrates potential even for forecasting
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probabilities of high costs - such as costs that exceed £10,000. A function
of the methodology is that CH (as well as HH and FP) is unable to extrapo-
late beyond the observed sample, and so in applications where sample size is
small, or if the decision-maker is interested in the probability of extremely
high costs beyond the largest observed, this method would be unable to
provide any information on this parameter. This represents a fundamental
flaw for this type of method for fitting the distribution of healthcare costs,
where the underlying data generating process is heavy-tailed, and any ob-
served sample is unlikely to contain some of the extreme outcomes which
are possible.

As mentioned in the methodology section of the paper, some of these
methods have been automated in order to make the quasi-Monte Carlo study
design feasible. For instance, we only allow location parameters to vary with
covariates and we restrict the number of mixtures used in FMM LOG and
FMM SQRT. In practice, analysts are likely to train their model for a given
sample - testing the appropriateness of covariates in the specification as well
as the number of mixtures that are required etc. Since all methods have been
restricted to some degree, e.g. the regressors are the same for all methods,
the results of this paper give some indication of the relative performance of
these methods and illustrate their pitfalls and strengths.

This paper has analysed the ability of methods to forecast probabilities
associated with ranges of costs across the distribution, but there are numer-
ous further challenges that need to be addressed in this area. One aspect of
performance might also touch upon the ability to forecast tail probabilities
for individual costs. Since it is impossible to observe the empirical probabil-
ity for an individual cost, it is not clear how this could be done. In addition,
constructing an experimental design that allows for this kind of evaluation
might be problematic given the estimation procedure for the distributional
methods using the quantile function (i.e. MM and RIF). Nevertheless, poli-
cymakers could potentially be interested in the performance of each method
in this regard and so further research would be useful. Another area for
research is the performance of specification tests in terms of discriminating
between methods which fit the whole distribution well and those that do
not. For researchers fitting the conditional mean function, there is a battery
of tests that can be employed, however it’s not clear as to whether these
would be useful for analysing tail probabilities.
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