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Research question:  How do future changes in health insurance 

status affect current decisions with regards to investment in 

health?

Basic Structure:  Two stage intertemporal Grossman model of 

investment in health



Max:  ∫𝑡𝑡0
65𝑈𝑈(𝐶𝐶,𝐻𝐻)𝑒𝑒−𝜌𝜌𝑡𝑡 𝑑𝑑𝑑𝑑 + ∫65

𝑇𝑇 𝑈𝑈(𝐶𝐶,𝐻𝐻)𝑒𝑒−𝜌𝜌𝑡𝑡𝑑𝑑𝑑𝑑

Divide life into two stages – pre- and post-retirement

Treat each stage as an intertemporal optimization problem.
Solution to the retirement stage problem takes as its H0 the 
value of H at the end of the first stage:  H65
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By its nature, the value of H at the end of the first stage 

will be the same as the value of H at the beginning of the 

second stage

By the transversality condition for a two-stage optimal 

control problem, the value of the shadow price of health 

at the beginning of the second stage will be the same as 

its value at the end of the first stage.
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Standard Grossman framework with a few twists:

Two state variables, Health (H) and Wealth (W)

Stochastic elements:

Two categories of stochastic shock – morbidity and mortality.

Morbidity shocks – downward shocks to health. 

Enter the equation of motion for health capital.



In continuous time terms, using Merton’s generalized Ito 
derivative:

dH = [ A(t)Ig(H(t), I(t), l(t)) – δ(t)H ]dt – φ(t)H(t)dπ

A(t) = technological progress term

Ig(H(t), I(t), l(t)) = gross health investment function

δ(t) = non-stochastic health depreciation term

φ(t)H(t)dπ = stochastic health depreciation term



Mortality shocks:

Finite horizon model – T = biological upper limit to life.

Actual age at death is stochastic: Tm ∈ [0,T]

Tm = min {t: εm = 1}

Pr{𝜀𝜀𝑡𝑡+1𝑚𝑚 = 1 |Ht } = 1 – exp[-λm (Ht )]

λm (Ht ) is decreasing in H.



Both types of health shock, but operate through λm (Ht ), the force of 
mortality term .

Morbidity shock reduces H, increases probability of death at any 
moment.

Mortality shock kills. 



Λ(H(t)) = probability of being alive up to period t 

π(t) = probability of dying in period t.

Then, seen from t=0, the individual’s problem is: 

Max ∫0
𝑇𝑇[Λ 𝐻𝐻 𝑑𝑑 𝑈𝑈 𝐶𝐶 𝑑𝑑 , ℓ 𝑑𝑑 + 𝜋𝜋 𝐻𝐻(𝑑𝑑) 𝑈𝑈𝑀𝑀 𝑊𝑊 𝑑𝑑 ]𝑒𝑒−𝜌𝜌𝑡𝑡𝑑𝑑𝑑𝑑



Subject to stochastic equation of motion for H

deterministic equation of motion for W, 

Wt+1 = [Wt + Yt(l) – Ct – OOPt (It) – Πt]R

W = financial wealth, Y = income, R = interest factor, Π = insurance 
premium, OOP = out of pocket payment for care.



Instantaneous budget constraint, and hence equation of motion 
for wealth, allow for change in earnings function on retirement, 
including exogenous drop in wages.

Also allows for out of pocket payments (OOP) for health care, 
which depend on deductibles and co-insurance payments



In any period if are alive get utility from Consumption and leisure.

If die, get utility from leaving a bequest:  Um (W)

W = accumulated wealth.

Here Um is negative but increasing in W.

Don’t want to go, but ability to leave a bequest lessens the pain 
somewhat.

Nice touch.



Authors note that stochastic horizon with endogenous 

health-dependent death intensity is isomorphic to a fixed 

horizon problem with endogenous health-dependent 

discounting.

Merton, Optimal consumption and Portfolio Rules (JET 1971)



Another variation on standard investment in health model:

Instantaneous utility depends only on C and l, not on H.

i.e. U = U(C, l), not U(C, l, H)

H enters only through force of mortality term, λm (Ht ) 



Not clear why this is an advantage from the theoretical point of 
view

In general seems reasonable that H affects utility directly and also 
utility to be derived from consuming non-health related 
commodities.

May have econometric appeal – only have to estimate effect of H 
through the λ function, not through both it and the utility function.



Make assumptions about functional forms, to substitute into 
Euler Equations:

𝐼𝐼𝑔𝑔(H, I, l ) = 𝐼𝐼𝜂𝜂𝐼𝐼ℓ𝜂𝜂ℓ𝐻𝐻1−𝜂𝜂𝐼𝐼−𝜂𝜂ℓ, 𝜂𝜂𝐼𝐼, 𝜂𝜂ℓ ∈ (0,1)

U(C, l) = 𝜇𝜇𝐶𝐶𝐶𝐶1−𝛾𝛾 + 𝜇𝜇ℓℓ1−𝛾𝛾
1

1−𝛾𝛾

𝑈𝑈𝑀𝑀 𝑊𝑊 = 𝜇𝜇𝑀𝑀
𝑊𝑊1−𝛾𝛾

1 − 𝛾𝛾



Ig(H(t), I(t), l(t)) = gross health investment function

Function of current stock of health, H, Health investment goods, I, and 

leisure, l, where leisure is measured in time units.

Argue that the joint inclusion of leisure and expenditures on health in 

the Ig function is innovative.

Not clear why:  time input into the production of health is pretty 

standard in Grossman models.



No distinction between leisure and the time input into the health 
production function.

Couch potatoes might agree, but may cause problems for 
estimation.

Health also enters as an input into the gross Investment function.

Increases in H increase the MPs of I and l.  



Leisure time on an average day 
 

 

 
 

Relaxing and thinking 
(17 minutes) 

Other leisure activities 
(18 minutes) 

 
 

Playing games; 
using computer for leisure 

(25 minutes) 

 
 

Watching TV 
(2.8 hours) 

 
 

Participating in sports, 
exercise, recreation 

(19 minutes) 
 
 

Reading 
(20 minutes) 

 
 
 

Socializing and 
communicating 

(39 minutes) 

Total leisure and 
sports time = 

5.1 hours 

 

NOTE: Data include all persons age 15 and over. Data include all days of the week and are annual averages for 





Euler Equations for control variables (C, I, l) and Equations of Motion 

for state variables (H,W) allow us to, in principle, plot out optimal 

trajectories for an individual’s values of (C, I, l, H, W) .

With suitable panel data could estimate these.

Problem:  don’t yet have panels containing all of the information we 
would like on interrelated health and economic variables.



Approach chosen here:  Simulated Moments Estimation

Essentially an application of agent-based modelling.

Build up an artificial dataset of individuals who behave 
according to the equations of the model.



Pick an initial set of coefficient values.
Generate an artificial population of individuals all at t=0:
In this case, 16-year olds

Give each individual H0 and W0 based on true values – ideally 
random drawing from real world (H,W) data on individuals 
aged t=0. 

Run the Euler equations and equations of motion ahead to 
generate artificial data out to t=T



Calibrate – match some characteristics of artificial data to their 
counterparts in real world data set.

Adjust coefficient values to bring characteristics of artificial data as 
close as possible to real counterparts.

When distance between real and artificial characteristics has been 
minimized according to some criterion function, you have your 
coefficient estimates.



In practice have to calibrate some parameters to the literature, 
estimate the others using SME.



 
 
 
 
 

ψ 
P I 

0 

0.200 
1.8522 

Π 
gP 

0.0413 ΠM 0.0167 
0.008 D0 0.0100 gD 0.008 

Y R 0.1476 τ 0.0145 Rf 1.04   
β 0.9656 µc 0.3333 µ  0.6667 µm 0.0200 

Wmin 0.05 Wmax 4 Hmin 0.1 Hmax 3 
Cmin 0.05 Cmax 1 Imin 0 Imax 1 
£min 0.05 £max 1     
KW 10 KH 10 KY 30   

 

parameter value parameter value parameter value parameter value 
T 
ξm 

100 
2.5 

κ 
λs 

2 

-37 
50 

 
ξs 

 
4.9 

  

A0 1.5 gA 0.004 ηI 0.20 η 0.40 
 

Calibrated Values



parameter value (standard error) 

0 

λs 

0.0061 
0.2621 
3.4005 

(0.0020) 
(0.1347) 
(1.4523) 

parameter 

gδ 

gφ 

λ1 

λ1 

value (standard error) 

λm m 

s 
0 
γ 

 
 
 
 

Table 7: Estimated parameter values 
 

 

 

 

 

 
 
 

Notes: Estimated parameters based on SME estimator (26). 

0.0154 (0.0062) 

0.0157 (0.0046) 
0.0091 (0.0044) 
5.1022 (1.2468) 

 

δ0 0.0166 (0.0072) 

φ0 0.0658 (0.0215) 
 



Dealing with individual lifetime trajectories of state and control 
variables.

Seems natural to match simulated data time-paths to real data time-
paths

Two immediate problems:

(1) Path calibration has consistency problems.

(2) Don’t have a long panel containing all of the requisite variables 
to use as the basis for calibration.



Alternative to path calibration: moment calibration.

Generate selected moments of the distribution of variables of 
interest from the artificial trajectories and compare them with 
moments from actual data. 

Here generate artificial longitudinal data sets, calculate age-
specific means of key variables over five year age intervals from 
20 to 80.



Five-year means of:

C, I, Out of Pocket (OOP) health expenditures, Leisure, Health, 
and Wealth.

In the absence of panel data containing all of these variables, 
compare the age-specific means from artificial data sets with 
means of data from cross-section surveys.  (The authors test for 
cohort effects.)

Have to draw each mean for matching from a different data set.





Initial (i.e. t=0) population:

Ideally would like to draw H0, W0 with replacement from real 
world joint distribution f(H,W,ε).



Here:  “we initialize the simulation by taking 100 draws (without 
replacement) from the observed distribution over health and 
wealth at age 16, such that this sample is representative of the 
general population at the beginning of adult age. We then 
simulate 500 trajectories from the initial grid along the optimal 
path. This procedure is therefore equivalent to simulating 50’000 
individual life cycles from which the 5-year moments are 
computed.”

Presumably individual distributions, h(H16 ,εH), w(W16 , εW), not 
a joint distribution f(H16 ,W16 , ε)



Given estimated parameters, insert details of broad types of 
insurance into First Order Conditions to generate simulated 
paths for different lifetime insurance combinations.

Denoted Y,O:  Younger, Older (over 65)

PM = Private, Medicare
NM = None, Medicare
NN = None, None
PN = Private, None
PP = Private, Private





US, 2013, Under 65:

84.7% of population had any health insurance

65.8% had private health insurance

24.5% had Government health insurance

15.3% uninsured



US, 2013, 65 and Over:
98.4% had any health insurance
54% had private health insurance
93.6% had government health insurance
1.6% uninsured

4.8% had private health insurance only (Snowbirds?)



 
Figure 4:  Life cycle health 
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Figure 4:  Life cycle health 
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Figure 5: Life cycle health investment 
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Figure 5: Life cycle health investment 
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Figure 6: Life cycle out-of-pocket health expenditures 
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Figure 7: Life cycle healthy leisure 

 

 
A. Simulated leisure 

1 
B. Observed leisure 

1 
 

0.8 0.8 
 

0.6 0.6 
 

0.4 0.4 
 

0.2 0.2 
 

0 
20 40 60 80 

Age 

0 
20 40 60 80 

Age 

PM Data 



PM 

 
Figure 8:  Life cycle wealth 
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