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1 Introduction

The dominant theoretical model in the economics of health broadly speaking
is the Grossman model (Grossman, 1972) which extends the theory of human
capital to the demand for health and medical care over the life-cycle and pro-
vides the foundation for a large body of empirical research. The dominant
theoretical model in the economic analysis of the consumption of addictive
commodities is the Becker-Murphy model of rational addiction (Becker and
Murphy, 1988; henceforth B-M). Each is a subset of the general model of
individual-level investment in human capital concerned with an individual’s
inter-temporal investment problem. To date, the two models have tended to
be treated as separate entities, both for theoretical and empirical analyses. In
this paper we treat the two theories as complementary and integrate them into
a single framework. Grossman’s model of investment in health capital consid-
ers the way an individual’s behaviour at one point in time a↵ects their health
over the entirety of their planning horizon. The model is usually set up such
that investment in health is a ‘good’ in the sense that it has a positive marginal
product in the production function for health. The consumption of addictive
‘bads’ such as smoking, however, can be modelled using the same conceptual
framework (but with a negative marginal product in the production function)
and ‘good’ and ‘bad’ investments considered simultaneously.

We develop and estimate a model that explicitly integrates the dynamics
of addiction and the human capital model of health investment. We adopt
an optimal control approach and model smoking behaviour and positive in-
vestment in health capital as simultaneous choices of a single optimization
problem, allowing for the presence of an addiction stock together with a stock
of health capital and investments in preventive medical care. We are not the
first authors to include both ‘goods’ and ‘bads’ in a Grossman framework (see
Forster, 2001, for example). The novelty in this paper is to construct the in-
tegrated model in a manner that is consistent with the medical literature on
the health e↵ects of smoking (e.g. Doll et al., 2004). That literature suggests
that smoking has a cumulative e↵ect in the sense that its impact on an in-
dividual’s health capital depends not on how much they are smoking today
but on the amount of smoking damage they have accumulated through their
lifetime. Consistent with the B-M framework we model smoking damage as
a state variable in an optimal control framework allowing it to have its own
intrinsic dynamics and consistent with the Grossman framework we also model
health capital as a state variable with its own intrinsic dynamics, but enter the
stock of smoking damage as an explanatory variable in the equation explaining
health damage. This allows us to let smoking not only have its own dynamics
but to have a di↵erent time profile of e↵ect on health than other health related
activities.

The resulting inter-temporal optimisation leads to a system of interrelated
first-order di↵erence equations. Empirical implementation of this system is
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complicated by the fact, not uncommon in health datasets, that we lack data on
certain key choice variables - most obviously on cumulative smoking damage.
We therefore reduce the system from four inter-related first-order di↵erence
equations to a pair of stand alone fourth-order di↵erence equations, one in
health and one in cigarette consumption. An implication of the derivation
is that the roots of each of the single fourth-order di↵erence equations are
the same as the four roots of the original system of four first-order di↵erence
equations and accordingly can be used to investigate the dynamics of the
system.

This is the first attempt, as far as we are aware, to formally reconcile
the two fundamental economic theories of individual health behaviour, the
human capital model of health investment and the model of rational addiction
(RA), into a single framework. Secondly, the integrated framework explicitly
allows health capital and smoking damage to have distinct dynamic shadow
prices which is not the case when the current level of cigarette consumption is
simply entered directly as an input into the health capital production function.
The di↵ering evolution of these two dynamic shadow prices can be seen as
underlying the way di↵erent individuals choose di↵erent lifetime pathways for
health and addiction capital. Thirdly, we present and discuss an empirical
implementation of the combined model in a continuous choice framework. This
requires the estimation of dynamic panel data models involving fourth-order
lags of the dependent variable. We do this using a generalised method of
moments systems estimator deriving instruments for the lags of the dependent
variable from past period observations. This necessitates the use of rich and
mature panel data and we make use of 18 waves of the British Household Panel
Survey (BHPS).

Our estimates confirm the strong persistence of both smoking consumption
and health capital with direct e↵ects on current health and smoking observed
for up to three and four lagged periods for men and women respectively. The
dominant real roots which drive the long-term behaviour of health and smok-
ing consumption are both postive and less than one in absolute value, and
are numerically similar across the equations and generally also for men and
women. Conditional on the intrinsic dynamics in the health and smoking equa-
tions, we find that for men higher household income is associated with being
healthier while for women health appears independent of income. The e↵ect
for men, however, is small and appears to corroborate findings elsewhere in the
literature on the relationship between income and health (e.g. Contoyannis et
al., 2004; Frijters et al., 2005; Meer, 2003). Education while generally display-
ing the expected gradients for health (positive) for women, is not statistically
significant. Education does, however, display a more pronounced gradient for
smoking with e↵ects greater (and statistically significant) for women compared
to men. Non-white ethnicity is significantly associated with lower daily smok-
ing for women. There is evidence of geographical variation, particularly for
women where areas generally associated with increased levels of deprivation
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(compared to the baseline of South East of England) are associated with de-
creased health and increased smoking.

The paper is organised as follows. Section 2 provides a background to
the B-M model of RA and the Grossman model of health capital investment
and maps out the way in which these theories can be integrated. Section 3
presents our theoretical approach that nests the Grossman model within the
RA framework. Sections 4 and 5 present our empirical approach and data
respectively. Results follow in section 6 and section 7 presents a discussion of
the findings.

2 Background

Early applications of the RA model were focused on the analysis of cigarette
consumption and were based on both aggregated (Becker, Grossman, Mur-
phy, 1994; Keeler et al., 1993) and individual-level data (Chaloupka, 1991).
In this framework, rationality involves forward-looking behaviour or a plan
to maximise utility over time and accordingly individuals anticipate the fu-
ture (harmful) consequences of their current choices. These studies appear to
broadly support the main implications of rational addictive behaviour, and re-
ject myopic behaviour.1 In standard RA models addiction is often considered
the only factor that a↵ects an individual’s health while health capital and its
evolution over the life-cycle are not explicitly modelled.

More recent applications on tobacco consumption employ dynamic panel
data specifications and focus on issues such as errors-in-variables, data cen-
soring and individual-level unobserved heterogeneity (e.g. Jones and Labeaga,
2003; Labeaga, 1999). In general, these models also reject myopic behaviour
and support RA. The dynamic framework of addiction has also been applied
to the analysis of consumption of other addictive goods such as alcohol (Bal-
tagi and Gri�n, 2002; Grossman, 1993; Grossman, Chaloupka, and Sirtalan,
1998; Waters and Sloan, 1995) and illicit drugs such as cocaine, heroin and
marijuana (e.g. Grossman and Chalopka, 1998; Sa↵er and Chaloupka, 1999).

The seminal work of Grossman (Grossman, 1972) draws from the literature
on human capital theory (Becker, 1965; Becker and Woytinsky, 1967; Mincer,
1974) and applies it to the demand for health and medical care over the life-
cycle. In this framework, individuals inherit an initial amount of health capital
stock that, while depreciating with age, can be increased through investments
in health (for example, via medical care). Extensions to the model tend to focus
on its underlying assumptions and implications concerning optimal investments
(e.g. Ehrlich and Chuma, 1990).

1Note, however, that most studies are not conclusive in this respect and often produce
implausible estimates of discount rates. However, see Gruber and Koszegi (2001) for a
discussion of potential dynamic inconsistencies in preferences with respect to smoking. Note
that our paper is concerned with embedding the Grossman model within the RA framework
and is not explicitly concerned with estimating discount rates.
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There are few economic studies that model health and smoking jointly.
Adda and Lechene (2013) employ hazard models on data drawn from the
Swedish Survey of Living Conditions merged with death records to analyse the
e↵ect of smoking on mortality. They find evidence of selection into smoking
such that individuals with poorer health are more likely to smoke and that
the e↵ect of smoking on mortality appears to be larger for individuals with a
potentially longer life expectancy as measured by a series of proxies for health
status. Balia and Jones (2008) estimate a recursive system of equations for
lifestyles, morbidity and mortality and explore health inequalities in mortality
using decomposition techniques on data from the British Health and Lifestyle
Survey. They find that lifestyles appear to contribute strongly to inequality
in mortality, reducing the direct role of socio-economic status. Darden (2012)
proposes a RA model of smoking augmented by a Bayesian learning process
through which individuals acquire information about their own health and use
it to make decisions about smoking. Therefore, these studies have focused on
specific aspects of the interactions between health (longevity and individual
health information) and lifestyles but do not attempt to formally set out a
model of the dynamic interrelations between smoking and health capital.

Integrating investment in health capital into the B-M framework poses fun-
damental challenges. First is the di�culty in defining and solving a two state
variable dynamic optimisation problem - with one state variable representing
the accumulated stock of health and the other the accumulated stock of addic-
tion (e.g. Leonard and Long, 1992; Pitchford, 1977). Secondly, estimation of
the dynamic models which this general theoretical perspective implies, requires
long panels of individual level data. It is standard in the applied literature on
smoking behaviour to include a variable representing current state of health,
and, conditional on data availability, variables on past health shocks (e.g. Ar-
cidiacono, 2007). Nonetheless very few papers treat the level of health as a
variable a↵ected by smoking behaviour while allowing smoking to be dynam-
ically endogenous, and the time paths of smoking and health as part of the
same inter-temporal optimization problem. In this paper we adopt a multi-
state variable optimal control approach to combine the Grossman and B-M
models as it appears to be the most promising approach for understanding
the nature of the lifetime trajectory of individuals’ health capital stocks. Our
view is that in combining these two models, we need to recognize that smoking
behaviour and positive investment in health capital are simultaneous choices
emerging out of a single optimization problem.

3 Theoretical model

3.1 The standard model of rational addiction

The RA model of B-M analyses the smoking choices in an inter-temporal op-
timization framework where the quantity of cigarettes smoked is the control
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variable and the stock of addiction capital is the state variable. In this model,
addiction is generally reflected in the assumption that, as the stock of addic-
tion increases, a consumer’s preferences are changed increasingly to favour the
consumption of cigarettes (via reinforcement). This is despite the assumption
that the individual also derives disutility from their stock of addiction capital
due to the detrimental e↵ects of smoking on health. In discrete time terms,
the elements of the standard RA model can be written as:2

max
1X

t=0

�tU (Xt, St, At) , (1)

with UX > 0, UXX < 0;US > 0, USS < 0;UA < 0, UAA < 0;USA > 0;

At = f (St) + (1� �A)At�1, fS > 0, fSS < 0; (2)

Yt = Xt + pSSt, (3)

where St is the quantity of cigarettes consumed in period t, At is the stock of
addiction, Xt refers to other commodities and Yt is income. The relative price
of S is pS with the price of X normalized to 1; �A is the rate at which the stock
of addiction decays and � is the discount factor. The marginal utilities of Xt

and St are positive and decreasing while that of At is negative and decreasing.
The intertemporal utility function (1) is maximized by choice of Xt and St. 3

The equation of motion for the addiction stock is given by (2). Here smoking
is assumed to have a positive e↵ect on At, although due to the di�culty in
measuring At, it is usually assumed that f(St) is linear for At.4 This problem
is solved as an optimal control problem, yielding necessary conditions which
include the equation of motion of At and a terminal transversality condition
and an Euler equation for St. The resulting first-order di↵erence equation in
St interacts with the first-order di↵erence equation for At. This is a straight-
forward optimal control problem, which could be analysed qualitatively using
a phase diagram in St and At.

A standard problem in the empirical literature is the di�culty of measur-
ing At.5 In the majority of applications this is handled by the reduction of
the system of two first-order di↵erence equations, one in St and one in At,
to a single second-order di↵erence equation in St, where St (consumption of
cigarettes) is the observable variable. This reduction is standard in the dynam-
ics literature (see Ferguson and Lim, 2003), and preserves the characteristic

2RA models often include a wealth equation (e.g. Becker and Murphy, 1988). This is
omitted here as it is not essential to our narrative.

3In this version of the model, where borrowing is not permitted, Xt and St are tied
together by the budget constraint (3) which allows us to substitute Xt out of the problem.

4This assumption of linearity does not impact on the qualitative solution to the problem.
5Some studies have used biological markers which are assumed to reflect the addictive

stock (Adda and Cornaglia, 2006, 2010).
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roots of the system, which drive the dynamics of both At and St. In what fol-
lows we will employ a similar strategy and reduce a system of four first-order
di↵erence equations resulting from optimization into two single fourth-order
di↵erence equations; one in health and one in smoking, while preserving the
characteristic roots of the initial system.

3.2 Integrating the Grossman model

A limitation of the standard B-M model is that the only factor which represents
or a↵ects an individual’s health is the stock of addiction capital, At. We aug-
ment the model with a Grossman model of investment in health capital, where
the investment goods include harmful health ‘bads’ (cigarette consumption)
as well as the usual investment ‘goods’. In other words, the rational, life-
time investor in health capital should consider the range of factors that a↵ect
his lifetime health simultaneously, and this should be reflected in theoretical
models as well as their empirical counterparts.

We extend the B-M model to include the demand for health. We write the
individual’s lifetime utility function as:

1X

t=0

�tU (Xt, St, Ht, At) ,

with UX > 0, UXX < 0;US > 0, USS < 0;UA < 0, UAA < 0;USA > 0;UH >
0, UHH < 0. The variable, Ht, is the stock of health capital at time t. Ad-
diction capital, At, remains as an argument in the utility function since an
individual derives disutility from being addicted, even though the health ef-
fects of smoking, which rises with the cumulative amount smoked over time,
could be absorbed into Ht. Ht cannot be purchased directly, but rather must
be produced using an input Mt, which can be purchased. Accordingly, the
budget constraint is now,

Yt = Xt + pSSt + pMMt,

where the price of cigarettes, pS, and medical care, pM , are relative to the price
of other consumption goods, X.

We retain the equation of motion for A, given by (2), and specify the
following equation of motion for H,

Ht+1 = [1� �H ]Ht + h (Mt) + l (At) , hM > 0, hMM < 0; lA < 0, lAA < 0.

A appears in the equation of motion for H to represent the cumulative
e↵ects of smoking on cumulated health capital. Even if an individual quits
smoking such that S = 0, the accumulated addiction stock will continue to
harm their health (reduce health capital) until it has decayed away. We assume
that investing in health via the purchase of medical care, Mt, does not produce
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utility per se.6 Consumption which is neutral or bad for your health does
produce utility: l (0) > 0, lA (A) < 0. Hence, l (0) represents an extra health
increment obtained by someone who has accumulated no addiction capital, and
allows us to define a small improvement in the health of someone who quits
smoking. This accords with results from the biomedical literature suggesting
that if an individual quits smoking relatively early in life, before their stock of
addiction has created permanent health damage, then their survival probability
should revert to that of a never smoker in a relatively short time period (Doll et
al., 2004). Conversely, someone who has accumulated a large addiction stock
might not be able to benefit from quitting in the same way as individuals with
a smaller accumulated stock, so that for most long term smokers, l (A) will be
negative. After substituting X out of the utility function, using the budget
constraint, the problem, written in Chow’s Lagrange multiplier format (see
Ferguson and Lim, 2003) is:

Max
1X

t=0

�tU (Yt � pSSt � pMMt, St, At, Ht)� �t+1�t+1 [Ht+1 � [1� �H ]Ht

�h (Mt)� l (At)]� �t+1µt+1 [At+1 � [1� �A]At � f (St)] ,

where � and µ represent the shadow price of health and addiction capital
respectively. Since addiction is a ‘bad’, µ is negative while � is positive because
health capital is a ‘good’.

The corresponding first-order conditions are:

�µt+1 = pSUX (t)� US (t) , (4)

��t+1h (Mt) = pMUX (t) ,

� [1� �H ]�t+1 = �t � UH (t) ,

� [1� �A]µt+1 = µt � UA (t)� ��t+1l (At) . (5)

The equation of motion for the shadow price of addiction capital (5) now
contains the shadow price of health capital, �, reflecting the fact that the stock
of addiction capital is a determinant of the stock of health capital. The first-
order conditions can be rearranged to eliminate the Lagrange multipliers. In so
doing, we assume that these conditions always hold, meaning that individuals

6More generally M can represent any good which is beneficial for health but yields no
direct utility. We follow the standard approach in the literature and denote this as medical
care.
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are in fact optimizing. Rearranging yields the following system of four first-
order di↵erence equations in Mt, St, At and Ht:

[1� �H ]
(pMUX (t))

h (Mt)
=

pMUX (t� 1)

�h (Mt�1)
� UH (Ht) , (6)

[1� �A] pSUX (t)� [1� �A]US (t) = pSUX (t� 1)� US (t� 1)

�

�UA (t)� pMUc (t)

h (Mt) l (At)
,

At+1 = [1� �A]At + f (St) ,

Ht+1 = [1� �H ]Ht + h (Mt) + l (At) .

This system of first-order di↵erence equations can be translated into four
linearized first-order di↵erence equations in Ht, St, At and Mt which, in turn,
can be reduced into a single fourth-order equation in St or Ht. These form the
basis of our empirical model.

4 Empirical models

4.1 Derivation of estimating equations

The starting point for our estimation strategy follows the original B-M model
as described by equations (1) to (3). The first-order conditions for this model
can be rearranged as a pair of first-order di↵erence equations in St and At.
However, the B-M model is typically estimated as the following linear second-
order di↵erence equation in S:

St = ↵0 + ↵1St+1 + ↵2St�1 + ✏t. (7)

Typically this is referred to as a forward looking second-order di↵erence
equation, since it contains St+1 on the right-hand side and it is often said
that the forward looking nature of this equation reflects the rationality of
the consumption decision. In fact, rationality is a consequence of this equa-
tion having emerged from an inter-temporal optimization problem and is in
many ways inherent in the first-order condition (4) which we can rewrite as:
��µt+1 = US(t) � pSUX(t). In this expression, µt+1 is the shadow price of
another unit of addiction capital (negative since addiction capital yields disu-
tility). The right hand side of this expression is the net benefit in utility terms
that the consumer derives from consuming another unit of St net of the utility
given up because consuming more S requires consuming less X. The fact that
the benefit is derived in period t and the cost in t + 1 is the essence of the
forward-looking nature of the decision.
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The standard empirical specification of the RA model (7) is written with
one lead and one lag of the dependent variable on the right hand side. This
specification, is however, not necessary and could be rearranged and written
with two lags on the right hand side. The RA problem is, as noted above, an
inter-temporal optimization problem which is typically set up as an optimal
control problem. The solution equations to an optimal control problem are
necessary conditions for optimizing the present value of the stream of future
utilities which will arise from future consumption decisions, taking account of
how current consumption a↵ects future addiction. The process of reducing the
two interrelated first-order di↵erence equations which fall out of the necessary
conditions of the usual version of the RA model to a single second-order di↵er-
ence equation does not a↵ect the fact that the necessary conditions are forward
looking, regardless of how we happen to write the second-order equation.

The fact that (7) is a single second-order di↵erence equation in St rather
than a pair of first-order di↵erence equations, one in St and one in At, is a re-
flection of the result that a pair of interrelated first-order di↵erence equations
can be reduced to a single second-order di↵erence equation in either of the
variables by suitable substitutions. In the case of the standard B-M reduction
underlying the typical estimation equation is the assumption that the system
of first-order conditions has first been linearised and then the necessary sub-
stitutions made. One implication of the reduction process is that the roots
of the single second-order equation are the same as the roots of the system
of two first-order di↵erence equations. This means that the dynamics of St

derived from the estimated single second-order system will be the same as the
dynamics that would be observed for St were it possible to estimate the origi-
nal pair of di↵erence equations. It is not possible to estimate the original pair
of equations since At is unobservable, so this result means that in estimating a
single second-order di↵erence equation for St, while we lose some information
about At, but the dynamics of St in the sense of its behaviour over time are
the same as would be found were it possible to estimate the original system.

Thus the estimation of a second-order di↵erence equation for St is not so
much a sign of rationality as it is a matter of making sure that we extract as
much information about the intrinsic time path of St which, since the consumer
is assumed to be rational, depends on the time path of At. Rationality is
inherent in the optimal control model we are using to explain an individual’s
lifetime path of cigarette consumption.

Our estimation strategy set out below is based on an extension of the B-M
approach, where we reduce our set of four interrelated first-order di↵erence
equations (6) to a single fourth-order di↵erence equation. For tractability, we
follow a practice which is common in the literature on analytical dynamics,
when expressions for characteristic roots are being found for a model which is
intrinsically nonlinear, and assume that we are working with a linear approxi-
mation to the original non-linear system. These assumptions about functional
form lead to the following four linearised first-order di↵erence equations:
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Ht = #0 + #1Ht�1 + #2St�1 + #3At�1 + #4Mt�1 + #5Xt + ⌘ht
St = ↵0 + ↵1Ht�1 + ↵2St�1 + ↵3At�1 + ↵4Mt�1 + ↵5Xt + ⌘st
At = �0 + �1Ht�1 + �2St�1 + �3At�1 + �4Mt�1 + �5Xt + ⌘at
Mt = !0 + !1Ht�1 + !2St�1 + !3At�1 + !4Mt�1 + !5Xt + ⌘mt (8)

These four first-order di↵erence equations can be reduced into single fourth-
order linear equations for estimation (see Appendix A for details). We do this
separately for smoking and health which yields the following general forms:

Sit = �s0 + �s1Sit�1 + �s2Sit�2 + �s3Sit�3 + �s4Sit�4 + ✓s1X
s
it + ✓s2X

s
it�1

+✓s3X
s
it�2 + ✓s4X

s
it�3 +  sW

s
i + µis + (✏it + ⇢✏1✏it�1 + ⇢✏2✏it�2 + ⇢✏3✏it�3) (9)

Hit = �h0 + �h1Hit�1 + �h2Hit�2 + �h3Hit�3 + �h4Hit�4 + ✓h1X
h
it + ✓h2X

h
it�1

+✓h3X
h
it�2 + ✓h4X

h
it�3 +  hW

h
i + µih + ("it + ⇢✏1"it�1 + ⇢✏2"it�2 + ⇢✏3"it�3)(10)

for i = 1, . . . , N, and t = 1, . . . , T .

Here Sit represents smoking consumption for individual i at time t; Hit is
the stock of health; Xs

it and Xh
it are sets of exogenous time-varying predictors

of smoking consumption and health respectively. W s
i and W h

i , and µis and
µih are respectively time-invariant predictors and time-invariant individual-
specific unobserved e↵ects for smoking and health. We assume that ✏it ⇠
i.i.d. (0, �2

✏ ) with E (✏it) = 0 and, similarly, "it ⇠ i.i.d. (0, �2
") with E ("it) = 0.

Also, we assume that E (Xs
ir, ✏it) = 0, E

�
Xh

ir, "it
�
= 0 for 8r, t. That is, Xs and

Xh include strictly exogenous regressors uncorrelated with ✏ and " respectively.
Both sets of time-varying predictors may, however, be correlated with their
respective unobserved e↵ects, µis and µih. We assume that the time-invariant
regressors W s

i and W h
i are orthogonal to the unobserved time-varying e↵ects.7.

Note that the equations contain third-order moving average processes in the
error (MA(3)).

7It might be argued that this assumption is untenable. However, relaxing the assumption
requires either the identification of external instruments for Wi, or relying on instruments
internal to the model. The latter might consist of transformations of Xit, . . . , Xit�3 where
a subset of these are assumed to be uncorrelated with the unobserved individual specific
e↵ect in the spirit of Hausman and Taylor type estimators (Hausman and Taylor, 1981).
Alternatively, di↵erences in the lags of the dependent variable can be used as instruments.
It is not surprising, however, that such instruments are weak when used in this context.
Estimates of the lagged dependent variables, Sit�1, . . . , Sit�4 and Hit�1, . . . , Hit�4 do not
change dramatically for models estimated without the vector of time-invariant regressors.
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4.2 Estimation

It is well known that OLS estimation of dynamic panel data models with
fixed T is biased such that the parameters �s1 , �s2, �s3 and �s4 in (9) and
�h1 , �h2, �h3 and �h4 in (10) will be overestimated (Nickell, 1981). Stan-
dard fixed e↵ects estimation is downwardly biased. Instead estimation by
the generalized method of moments (GMM) is favoured, constructing in-
struments for the lagged dependent variables, (Sit�1, Sit�2, Sit�3, Sit�4) and
(Hit�1, Hit�2, Hit�3, Hit�4) from past values of the regressors (Arellano and
Bond, 1991). The standard approach to dealing with the individual fixed
e↵ect (µih and µis) is to first-di↵erence the model. The additional serial corre-
lation induced in the first-di↵erenced error term informs the moment restric-
tion imposed on the model and the choice of instruments. In the standard
autoregressive dynamic panel data model with a single lag of the dependent
variable, no exogenous regressors and no serial correlation in the error term
in levels form, values of the dependent variable lagged two periods or more
are valid instruments in the equation in first di↵erences. For T � 3, there are
m = (T � 2) (T � 1) /2 moment restrictions of the form E [Z 0

i⌘̄i] = 0 where
⌘̄i = (⌘̄i3 · · · ⌘̄iT )0 and ⌘̄it = ⌘it�⌘it�1. These ideas naturally extend to the case
of additional lags of the dependent variable and where serial correlation in the
error exists in levels.

After first-di↵erencing (9), the moment restrictions can be written in vector
form as E

�
Z 0D

i �✏i
�
= 0, where �✏i = (�✏3i, . . . ,�✏iT )

0. �✏i = ✏it � ✏it�1 and
ZD

i is a block diagonal matrix whose jth block is given as (see Appendix B for
details):

ZD
i =


diag (Si1, . . . , Sis)

... (�Xi6, . . . ,�XiT )
0 (�Xi5, . . . ,�XiT�1)

0

(�Xi4, . . . ,�XiT�2)
0 (�Xi3, . . . ,�XiT�3)

0
�

for s = 1, . . . , T � 5;T � 6 (11)

Accordingly, lags of the levels of the dependent variable form instruments
for the di↵erence model whilst the exogenous regressors act as instruments for
themselves.

Due to weak instruments, the GMM estimation in first di↵erence form can
perform poorly where there exists higher-order autoregressive terms (persis-
tence). Blundell and Bond (1998) suggest the use of a systems estimator that
exploits additional moment conditions based on lagged di↵erences of the de-
pendent variable as instruments for a model in levels (also see Blundell, Bond
and Windmeijer, 2001). These additional moment conditions are valid under
mean stationarity of the initial condition: E (µis�yi2) = 0, 8i. Estimation in
levels form also allows the identification of the coe�cients on the time-invariant
regressors, W s

i and W h
i . As these are assumed to the uncorrelated with the
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individual unobserved e↵ects they act as their own instruments for a model
in levels. We follow this approach and estimate the fourth-order di↵erence
equations using system GMM. This approach e↵ectively augments the above
instrument set with a set of moment conditions E

⇥
Z 0L

i ✏i
⇤
= 0 where

ZL
i =


diag (�Sit�4)

... (W s
i )

0
�

T � 6 (12)

Blundell and Bond (1998) show that these additional moment conditions
are informative where data are persistent and instruments for the di↵erenced
equation are potentially weak, resulting in smaller finite sample bias and in-
creased e�ciency.8

We begin by estimating the fourth-order di↵erence equations set out in (9)
and (10) using a systems GMM estimator with instruments defined in (11) and
(12). Due to the length of panel observations available in the BHPS the set
of instruments is large which can result in poor performance. Accordingly, we
place restrictions on the instrument set to reduce its dimensionality by remov-
ing instruments further away from the observation period, t. E�cient two-step
estimation applying Windmeijer’s finite sample correction to the estimated
variance is used (Windmeijer, 2005). Specification tests of autocorrelation and
the Sargan test of over-identifying restrictions are computed (see Arellano and
Bond, 1991). In addition we compare GMM systems estimation to the within
estimator (biased downwards) and OLS (biased upwards).

5 The British Household Panel Survey

(BHPS)

5.1 Data and sample

We estimate models on data drawn from 18 waves (1991 - 2009) of the
British Household Panel Survey (BHPS). The BHPS is one of the longest
and most comprehensive panel surveys currently available. The survey in-
cludes individual-level information on demographic and household character-
istics; lifestyles including smoking habits; physical and mental health, well-
being and the use of health care; education; job histories and interactions with
the labour market as well as income and wealth. Its design and main content
closely resemble those of other major panel data surveys such as the U.S. Panel
Study of Income Dynamics (PSID) and the German Socio-Economic Panel
(GSOEP). The BHPS initial sample (wave 1; 1991) consists of 5,500 private
households and 10,264 individuals from England, Scotland and Wales.9 Orig-
inal sample members are followed as they transit to di↵erent households and

8Note that further lagged di↵erences of the dependent variable are redundant when com-
bined with instruments for the first-di↵erenced equation (see Blundell and Bond, 1998).

9Before 1999 (wave 9), Scottish individuals were only sampled if they resided South of
the Caledonian Canal.
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interviews are conducted annually to all adult individuals (aged 16 years or
over), including new members of the households. Extension samples of around
1,500 households in each of Scotland and Wales and of 2,000 household from
Northern Ireland were added in 1999 and 2001 respectively, making the BHPS
representative of the whole UK.10

Our samples of interest consist of unbalanced panels of individuals who
reported the consumption of cigarettes in at least one of the 18 waves of the
survey. Never-smokers are excluded as such individuals tell us little about
addictive behaviours. Within this sample, individuals for whom we observe
su�cient data to estimate the model are included. Given the lag structure of
the empirical model and the requirement to construct instruments from prior
waves of data, this requires individuals to be observed for at least six con-
secutive waves.11 Clearly, responses on individuals for whom we observe non-
missing values on the set of variables of interest are included in the model. Ac-
cordingly, models for health are estimated on an unbalanced sample of 14,635
observations on 2,315 individuals for men and 17,674 observations on 2,701 in-
dividuals for women. Similarly, for smoking the respective samples are 18,407
observations on 2,864 individuals for men and 21,915 observations on 3,340
individuals for women.

5.2 Smoking

The BHPS contains two main self-reported indicators on smoking for adult
individuals: smoking status and the daily number of cigarettes smoked. Infor-
mation on smoking status is based on the question: “Do you smoke cigarettes?”
from which we create a dummy variable taking value 1 if the individual is a
smoker and 0 otherwise. Since the focus of our analysis is on addiction, our
empirical models employ data on individuals who self-report being a smoker
at least once during the period of the survey (potential smokers). Accordingly,
we exclude individuals who reported not smoking throughout the 18 waves of
the BHPS (see Table 1 for basic descriptive statistics for samples of interest).
Information on the number of cigarettes smoked is derived from the following
question “Approximately how many cigarettes a day do you usually smoke?”.
While this question is only asked to smokers, 0 is a possible answer that identi-
fies occasional or social smokers (that is, individuals who defined themselves as
smokers but report an average daily consumption of 0 cigarettes). Due to the
heaping of responses that is typical of self-reported information on the quantity
of cigarettes smoked (i.e. large number of responses concentrated at partic-
ular levels of smoking consumption), we recode consumption by considering
multiples of five cigarettes (we refer to these as ‘half packs’).

10For further details on the BHPS sample structure, see Lynn (2006).
11The lag structure imposed by serial correlation in the error-term determines the exact

number of lags required to construct valid instruments.
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5.3 Health

The BHPS contains a wide range of self-reported categorical variables of in-
dividual health status including the General Health Questionnaire (GHQ) on
subjective well-being (Goldberg and Williams, 1988) and, in waves 9 and 14,
the Short Form 36 (SF-36) health survey. The SF-36 is a standardised health
questionnaire including 35 psychometric-validated questions about 8 di↵er-
ent dimensions of both physical and mental health (physical functioning; role
physical limitations; bodily pain; general health; mental health: vitality; so-
cial functioning; role emotional limitations; mental health) (Ware et al., 1993).
Each dimension contains a set of items which present respondents with a se-
ries of choices about the perception of their own health. Information from
all these health questions is used to build a summary measure of health, the
SF-36 general index.12

We follow Brazier, Roberts and Deverill (2002) and use selected questions
from 6 of the original 8 dimensions of the SF-36 (physical functioning; role
limitations; social functioning; bodily pain; mental health; vitality) to build a
preference-based index measure of health called the SF-6D that is defined on
a continuous scale ranging between 0 (an health state equivalent to death) to
1 (full health).13 More specifically, Brazier et al. employed health information
from selected items of these 6 dimensions and combine it with health state
utility values to define a utility-based measure of health. Health utility values
were retrieved through a preference-based valuation survey of the UK general
population. We apply these weights on the items from the 6 dimensions of the
SF-36 to generate SF-6D values for individuals in waves 9 and 14 of the BHPS.
In order to recover SF-6D values for all individuals in each wave, we regress
SF-6D values onto the BHPS specific health conditions dummy variables14

present in all waves of data together with dummy variables derived from the
general SAH measure (excellent, fair, poor/very poor health leaving good/very
good health as baseline)15 using pooled Ordinary Least Square (OLS). We

12Additional and updated information on the SF-36 and its related literature are available
on the SF-36 community web page (http://www.sf-36.org).

13As specified in Brazier, Roberts and Deverill (2002), to build the SF-6D (where 6D
stands for 6 dimensions) they have excluded general health items and collapsed the two
dimensions of role limitations due to physical and emotional problems into a single role
limitations dimension.

14These cover problems related to arms, legs or hands, sight, hearing, skin conditions,
chest/breathing, heart/blood pressure, stomach or digestion, diabetes, anxiety/depression,
alcohol or drug use, epilepsy, migraine.

15Due to a change in wording and response categories in the SAH question at wave 9, we
collapse the original five category self-assessed variable (SAH) to a four category measure.
In waves 1-8 and 10-18, respondents are asked: Compared to people of your own age, would
you say your health over the last 12 months on the whole has been: excellent, good, fair, poor
or very poor?, whereas in wave 9, the question and possible answers are: In general, would
you say your health is: excellent, very good, good, fair, poor?. Creating a SAH variable with
four health categories (excellent, good or very good, fair, poor or very poor) allows common
support over the two versions of the question.
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estimate separate models for men and women and use the predicted SF-6D
scores from these regressions as our measure of health in our main empirical
specifications.16 In this way, we obtain a cardinal measure of health for all
individuals in our survey, defined on a continuous scale from 0 to 1 which is
used as our empirical proxy of health capital. As the measure draws from a
wide range of health domains we feel that it better approximates the notion
of health capital as originally defined in the Grossman model.

5.4 Socio-economic and demographic variables

5.4.1 Time-varying regressors

Our dynamic models of health and smoking are estimated separately for men
and women and are conditioned on age and age squared; household characteris-
tics (being married or cohabiting, household size and the number of cohabiting
children); labour status (employed, self-employed, unemployed, retired, long-
term sick/disability status and other employment17) with employed as an em-
ployee as the baseline and household income (equivalised annual log-household
income.). In order to account for the e↵ects of health shocks on both smok-
ing preferences and health status, we include a dummy variable defining the
presence of health shocks/accidents that led to hospitalisation in the previous
year.

5.4.2 Time-invariant regressors

In addition to the set of regressors outlined above, we include a set of time-
invariant variables for highest attained educational qualification (in descending
order: degree or higher degree, HND or A-level, O-level or CSE, versus no
qualification), ethnicity (categorised as white versus non-white) and a set of
region of residence dummy variables.18

In addition, a vector of year dummies is included in all models to account
for aggregate health shocks, time-varying reporting changes, trends in smoking

16We have also employed alternative specifications to compute predicted SF-6D values
for all individuals in the sample such as linear fixed e↵ects models. We have also estimated
versions of these models (pooled OLS and linear fixed e↵ects models) with lagged values of all
regressors (health variables) to ease potential problems related to endogeneity. As predicted
SF-6D scores and results from the main dynamic empirical models of health capital and
smoking do not appear to di↵er across these specifications; we use results from the simple
pooled OLS models to maximise the number of observations.

17Other employment consists of: looking after the family, maternity leave, government
training, student or other jobs.

18The set of regional dummy variables contains little variation across the waves and ac-
cordingly these are categorised as the region in which a respondent was observed to reside
the longest. The regions cover England (South East, South West, London, Midlands, York-
shire, North West, North East), Scotland, Wales and Northern Ireland. The South East is
taken as the baseline.
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incidence and prevalence and any e↵ects of ageing not captured by the age
variables.

Descriptive statistics for the set of explanatory variables are presented in
Table 1 separately for men and women. To save space these are presented for
the sub-sample of individuals used in the estimation of the smoking models.
These models contain a larger number of respondents than the corresponding
health equation. On average men smoke more cigarettes per day than women
(2.234 versus 2.123 half-packs respectively) and report better health status
(0.810 versus 0.785). The two samples are of similar mean age. Men are more
likely to be married or cohabiting, and more likely to be employed or self-
employed than women. Women are more likely to be catergorised as other
employed or retired than men. A larger proportion of men have a degree or
higher degree, or HND/A-level qualification compared to the sample of women.
Men report a higher household income than women and more health shocks
and/or accidents resulting in hospitalisation. A larger proportion of women in
the sample report white ethnic origin.

6 Results and discussion

6.1 Regression models

Table 2 for men and Table 3 for women summarise our estimation results sep-
arately for models for health and smoking. The first column presents OLS
estimates of models (9) and (10) above, applying robust standard errors to
capture general forms of heteroscedasticity. OLS estimation of dynamic panel
data models are biased upwards ((Nickell, 1981)), however, the estimated coef-
ficients on the lags of the dependent variable exhibit clear and strong gradients
for both health and smoking. While our estimates represent structural e↵ects
of composite parameters, it is worth noting that state dependence in smok-
ing and health outcomes have been observed elsewhere (for example, Baltagi
and Levin (1986); Christelis and Sanz-de-Galdeano (2009); Contoyannis et al.
(2004)). The second column presents corresponding estimates from within
(fixed e↵ects) estimation. These are biased downwards and while showing a
gradient across the lagged terms, the e↵ects are smaller than corresponding
OLS estimates and are less significant statistically.

The third column presents results of system GMM estimation of models
(9) and (10). Given the moving-average of order 3 in the errors, instruments
are constructed from observations of the dependent variable from period t� 5
and before for the model in first-di↵erenced form. Estimated coe�cients are
expected to fall between OLS and within estimation. Estimation was per-
formed by varying the maximum number of lags of the dependent variable
from which to define instruments, and results reported for the specification
that produced the most credible estimates. This decision was based on the
Sargan test for over-identification, tests for serial correlation and judgement
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on the resulting estimates. For example, coe�cients closer to within than OLS
estimation may be indicative of weak instruments. For men, instruments were
constructed from observations between 5 and 6 lagged periods for health and
5 and 7 lagged periods for smoking. For women these were between 5 and 8
lagged periods for both health and smoking models. Given the long lag period
required to construct instruments, it is not surprising that the resulting instru-
ments are weak leading to estimated coe�cients on the lags of the dependent
variable lying outside the range of OLS and within estimation. This holds for
the majority of estimates across both health and smoking models, for both
men and women. These estimates are not reliable.

Tests for serial correlation in first-di↵erenced form reveal, in general, cor-
relation of order 1 (reported in Tables 2 and 3). This corresponds to a lack
of moving average terms in the levels error structure of (9) and (10). Impos-
ing the restriction that ⇢✏1, ⇢✏2, ⇢✏3 = 0 in (9), and ⇢"1, ⇢"2, ⇢"3 = 0 in (10)
the respective error terms can simply be represented as ✏it and "it. These
restrictions free up instruments from periods closer to lags of the dependent
variable, Sit�1, . . . , Sit�4, and Hit�1, . . . , Hit�4. More recent lags are likely to
have greater predictive power and hence greater relevance as instruments than
those constructed from periods further away from the lagged terms.19 Column
4 presents GMM system results assuming a lack of a moving average process
(MA(0)) in the level’s error. For models of both health and smoking, and for
men and women, this specification is supported by tests for first-order serial
correlation in first-di↵erenced form and Sargan tests for over-identification.
Parameter estimates on the lags of the dependent variable lie between OLS
and within estimates and generally are closer to the former. For women, all
lagged terms are significant at conventional (5%) levels; for men, the first three
lags are significant. These results indicate strong and enduring persistence in
the evolution of both health capital and smoking consumption with direct ef-
fects on current health and smoking observed for up to three and four lagged
periods for men and women respectively.

All models contain contemporaneous values of the set of exogenous regres-
sors Xit and their corresponding lags: Xit�1, Xit�2, Xit�3, together with the set
of time-invariant regressors, Wi, and a vector of year dummy variables. Many
of the regressors, Xit, display little variation over time (for example, marital
status, employment status) and accordingly su↵er from collinearity. Few of the
lagged terms are significant in the model presented in column 4.20 To simplify
the interpretation of the e↵ects of these regressors, we restrict the coe�cients
on the lagged terms to be zero. This results in estimates presented in column
5. Again, the models pass relevant specification tests and the coe�cients on
the lagged dependent terms do not change substantively from those of column
4.

19Sit�2, . . . , Sit1 are potential instruments for �Sit�1, . . . ,�Sit�4. Similarly, for
�Hit�1, . . . ,�Hit�4.

20These results are available on request.
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Table 4 presents estimated coe�cients for the set of covariatesXit andWi.21

For men, larger household income is associated with increased health and other
employment is associated with decreased health (at the 6% significance level).
Interestingly individuals who reported an accident leading to a hospitalization
report better health than those not reporting an accident. Living in the South
West (compared to the South East) is associated with decreased health status
(at the 10% level). For women, lower health status is reported for those living
in Yorkshire (at 10%), the North West, the North East, Scotland, Wales and
Northern Ireland (at the 6% significance level) compared to the South East.
Again an accident in the previous twelve months is associated with reporting
higher health status. For male ever smokers, being unemployed (at the 5%
level) or other employment is associated with lower consumption of cigarettes
(at the 10% level) as is being married or cohabiting (at the 10% level). Men
living in Scotland, Wales and Northern Ireland report higher consumption
than men living in the South East (all at 5% significance). Being married or
cohabiting is also associated with lower levels of smoking for women, while
a greater number of children is associated with higher smoking prevalence.
Being self-employed is also associated with a higher consumption of cigarettes
(at the 10% level). For women there is a clear educational gradient with higher
educated individuals smoking less than lower educated individuals (baseline is
no qualifications). These e↵ects are highly significant. Women belonging to
non-white ethnic groups smoke less than their white couterparts. There are
also clear regional e↵ects, with women living in the North West, North East,
Scotland, and Wales all reporting higher levels of cigarette consumption than
those living in the South East of England.

6.2 Characteristic roots

The observed evolution of an individual’s stock of health (or smoking) will
depend in part on changes in exogenous variables and in part on the intrinsic
dynamics inherent in their optimal lifetime trajectory. That trajectory is char-
acterized by what is sometimes referred to as path dependence, conditional on
the values of the exogenous variables. Whether any series of observations on
H (or S) are on the same trajectory depends on the frequency with which
the exogenous variables cause the trajectory to shift. The trend along this
trajectory is in most cases non-linear. The presence of the exogenous explana-
tory variables in the equation means that we do a better job of estimating the
characteristics of the lifetime trajectory, since they will control for shifts in the
trajectory which are due to changes in the value of the exogenous variables.
At the same time controlling for the natural tendency of the variable in ques-
tion to evolve over time means that our estimation of the coe�cients on the
exogenous variables will be more e�cient.

21The year dummies, which are not reported, indicate a decreasing trend in smoking across
the waves for men but not for women and no discernible trends for health.
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The intrinsic dynamics of H and S are characterised by four roots. For men
the health equation has roots: 0.787,�0.363, and �0.026 ± 0.417. For men
smoking the roots are: 0.809,�0.225, and �0.04 ± 0.294. Since the roots are
highly non-linear combinations of the coe�cients we cannot test the hypothesis
that the corresponding roots match across the equations, as should be the case
given our theoretical structure. Instead we comment on the general pattern of
the results.

Both equations have two real and two complex roots. The dominant real
roots which drive the long term behaviour of the variables for health and smok-
ing are both positive and less than one in absolute value, and are, numerically
very similar. The second real roots are both negative, both less than 1 in
absolute value and of similar magnitude across the equations. While negative
roots are unusual in economic models, they can arise in empirical applications
simply as a consequence of the evolution of the variable in question between
observation points. The final two roots are, in each equation, complex con-
jugate pairs, implying a cyclical element to the trajectory. The modulus of
the complex roots in the health equation is 0.418 and in the smoking equation
0.297. The general pattern of the trajectories across the two equations are,
therefore, fairly similar, particularly with respect to the dominant root.

For the health equation for women, the roots are: 0.791,�0.409, and
�0.014 ± 0.412, and for smoking: 0.812,�0.349, and �0.002 ± 0.356. Again
the dominant roots are very similar across the pair of equations (and very
similar to the dominant roots in the male equations, which is not required by
the model). Again the second real root is negative in each equation, less than
1 in absolute value and reasonably similar across the equations, and the final
pairs are complex conjugates. In the health equation for women the modulus
of the complex roots is 0.412 and in the smoking equation; 0.356. Interestingly,
for both men and women the complex roots all imply cycles of periodicity of
roughly four years. It seems likely that this is an artefact of the data.

7 Discussion

A key insight of the Grossman model is the recognition that health related
behaviour has the characteristics of an investment in human capital, and ac-
cordingly a great many health-related decisions can be seen as elements of an
individual’s inter-temporal optimization problem. While the theoretical foun-
dations of the Grossman model are well understood, its empirical implemen-
tation has often proved di�cult. A reliance on cross-sectional or longitudinal
data with small T clearly poses serious challenges to estimation of the dy-
namic relationships fundamental to the model. In an attempt to circumvent
these issues, one strand of the empirical literature has followed the approach
adopted by Wagsta↵ (1986).22 This involves using the theoretical model to

22In turn Wagsta↵ (1986) was following suggestions made by Grossman (1972).
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find an equation representing an individual’s optimal choice of health invest-
ment as a function of the levels of exogenous variables and the rates of change
in certain of the exogenous variables and assuming that the dynamic element
can be assigned to the regression residual term. This has required empiri-
cal researchers to assume that changes to the observable exogenous variables,
which shift the individual’s optimal trajectory, were larger than the intrinsic
period-to-period dynamic progression along those trajectories, and that the
exogenous variables changed, discretely, with su�cient frequency that shifts of
the trajectories would more than dominate movements along the trajectories
through the span of the available data. This is not an entirely satisfactory
solution and does not fully respect the way in which dynamics appear in the
theoretical model.

Grossman (2000) discusses an empirical version of the model that would
be appropriate for implementation with individual-level longitudinal data. He
specifies a second order di↵erence equation in health capital, Ht, as a function
of Ht�1 and Ht+1 and relevant prices, together with health investments in
period It�1 written as a function of Ht�1 and Ht+1 and relevant prices but not
of other periods values of I.23 The second-order di↵erence equations can be
solved to express Ht or It�1 as functions of current, past and future values of
all the exogenous variables. At a minimum three waves of data are required
to identify the model, with additional waves needed should instruments be
constructed from past periods.

It is worth noting that the structural forms which Grossman proposes are
very similar to forms which have regularly been estimated in the related liter-
ature on RA. This is not surprising since the RA model is basically a health
investment model in which the most interesting cases are those of goods that
are, over the long run, bad for your health and for which the appetite grows.
The empirical RA literature, however, has most commonly made use of mar-
ket level rather than individual level data, although that has changed more
recently (for example, Labeaga (1999)).24 Arguably less use has been made of
individual level data for estimation of pure Grossman type models.

This paper makes use of a mature British panel data set containing up
to eighteen waves of data on any given survey respondent. This allows us
to robustly estimate an empirical specification containing structural dynamic
elements derived directly from a theoretical model that combines Grossman’s
health investment concept and the B-M RA model. In turn, this allows greater
understanding of the inherent dynamics of the model, but also the impact of
exogenous variables assumed to shift an individual’s optimal trajectory.

It is important to note here that we are not dealing with macro data,
or even market level data, in which variables are likely to be trended, either
exogenously or through the presence of a unit root. While our dominant roots

23These relate to equations (55) and (56) in Grossman (2000).
24Empirical results derived from individual level data do not contain unit roots and are

in general consistent with theoretical RA dynamics
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are reasonably large, and although lack of standard errors means that we
cannot formally test them against unity, there does not appear to be a non-
stationarity problem in our data set. The lagged dependent variables in this
type of equation are representations of intrinsic features of an individual’s
optimal trajectory.

Conditional on the intrinsic dynamics in the health and smoking equations,
few of the coe�cients on the exogenous explanatory variables are statistically
significant. For men higher household income is associated with being health-
ier while for women health appears independent of income. The e↵ect for men
is small, with a 1 unit increase in log equivalised income (calculated at the
mean this relates to a substantial increase in income from 10,360 to 36,315)
leading to a 0.5% point increase in SF-6D values (on a scale of 0 to 1). For
women health status appears independent of income. These small impacts of
income on health appear to corroborate findings elsewhere on the relationship
between income and health. Using the fall of the Berlin Wall as a natural
experiment to study the impact of rapid increases in income for East Germans
following reunification, Frijters et al. (2005), found a similarly small impact on
men (a 1 log point increase in income led to a 0.083 increase in health satis-
faction measured on a latent scale corresponding to an observed ordinal scale
of 0 to 10). They reported no e↵ect for East German women.25 Contoyannis
et al. (2004) and Meer (2003) also report small gradients in the income-health
relationship. Using a panel of elderly Americans, Adams et al. (2003), de-
velop tests of no direct causal link between socio-economic status and health
conditional on initial past health status, and do not find evidence to the con-
tray when considering mortality and incidence of most sudden onset of health
conditions (accidents and some acute conditions), but some association with
the incidence of gradual onset of health conditions (mental health, and some
degenerative and chronic conditions). There main measure of socio-economic
status is wealth, which appears to have far greater association with health
than current income (as used in our study).

Interestingly, highest educational qualifications while generally displaying
the expected gradients for health (positive) for women, is not statistically sig-
nificant. While this is contrary to theoretical predictions from the pure Gross-
man model (Grossman, 1972), this finding is supported by those of Adams
et al. (2003) who also conclude that education, conditional on socio-economic
status (wealth), is not systematically associated with health. Education does,
however, display a more pronounced gradient for smoking with e↵ects greater
(and statistically significant) for women compared to men. For the sample
of female ever-smokers, having an O-level or GCSE qualification is associ-
ated with 0.65 less half packs smoked daily (equivalent to three and a quarter
cigarettes) and attaining a degree or higher degree compared to HND/A-Level

25The study reported significant e↵ects of income on health satisfaction for West Germans
for both men and women, although these e↵ects were smaller than observed for men in East
Germany.
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qualification corresponds, on average, to a decrease in 0.2 packs of cigarettes a
day (equating to around a single cigarette daily). Being married or cohabiting
is associated with smoking less for both men and women; a results observed
elsewhere (Linström, 2010). Non-white ethnicity is significantly associated
with reduced daily smoking for women. In general, for both men and women
non-white ethnic groups have a lower prevalence of smoking than white ethnic
groups, although this masks important variation across minority groups which
is more pronounced for women than for men. For example, Black-Caribbean
and Other South Asian women have a far greater prevalence of regular smoking
(at levels slightly lower than white ethnic groups) compared to Bangladeshi,
Indian, Pakistani , Chinese and other Black minority ethnic groups (Mellward
and Karlson, 2011). There is evidence of geographical variation, particularly
for women where areas associated with decreased health (compared to the
baseline of South East of England) are also associated with increased smoking.
While this is likely to reflect variation in area deprivation, there is, however,
the possibility that geographic dummies are picking up the e↵ect of di↵erences
across regions in the distributions of the other explanatory variables.

One result that may appear surprising is the general lack of significance
of the terms for age. We typically expect age to play a significant role, at
least in an equation for health. In other empirical work, especially studies
relying on cross-section data and to a slightly lesser extent very short panel
data studies, age has acted as a proxy for the stage of an individual along
her lifetime trajectory. Given the tendency of that trajectory to non-linearity,
age works best as a proxy when entered as a polynomial. In our theoretical
model, though, age enters as a determinant of the rate of depreciation of health
capital, with depreciation increasing at older ages. This increase in the rate of
depreciation will tend to cause the individual’s stock of health capital to decline
faster in later years than in earlier years, but the individual may respond to
this increased rate of depreciation by increasing her investment in health and
slowing the rate of decline of H. This is part of the process by which the
optimizing individual contrives to follow the optimal lifetime trajectory for
health capital. Given that we have incorporated the shape of the trajectory
directly into the estimation by running fourth order di↵erence equations, there
remains little role for age to play.

Of the remaining variables, the lack of significance may well be a conse-
quence of a lack of within-individual variation. Alternatively it may indicate
that these variables do not have a role in shifting the optimal trajectory for an
individual. If these are variables which do not change often and which have
relatively small impacts on the position of the individual’s optimal trajectory,
it is not surprising that, conditional on the intrinsic dynamics, they do not
appear important.

Despite the econometric challenges associated with our approach, we argue
that further advances in our understanding of the essence of individual health
related decisions, given that those decisions are so clearly inter-related, are
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most likely to follow from the application of micro-econometric techniques such
as those used here to detailed structural modelling. The increased availability
of long panel data sets containing a range of health and general economic
variables opens a rich frontier for developments in health economics with a
firm theoretical foundation. Ultimately this is the type of approach needed
if we are properly to test the applicability of the human capital model to
health-related behaviours.
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Men Women
NT = 18407 NT = 21915

Variables Mean SD Min Max Mean SD Min Max

Cigarettes (1/2 packs) 2.234 2.096 0 9 2.123 1.862 0 9
Health 0.810 0.070 0.462 0.908 0.785 0.080 0.467 0.899
Age 45.25 15.96 19 98 45.26 15.98 19 96
Married/Co-habiting 0.710 0.454 0 1 0.632 0.482 0 1
Household Size 2.866 1.398 1 16 2.806 1.333 1 16
Number of Children 0.565 0.978 0 7 0.655 0.995 0 8
Employed 0.568 0.495 0 1 0.517 0.500 0 1
Unemployed 0.058 0.223 0 1 0.030 0.171 0 1
Self Employed 0.115 0.319 0 1 0.036 0.187 0 1
Retired 0.156 0.363 0 1 0.173 0.378 0 1
Employment other 0.089 0.284 0 1 0.227 0.419 0 1
Long-term sick 0.014 0.119 0 1 0.016 0.127 0 1
Log Household Income 9.636 0.646 -0.350 12.914 9.552 0.637 -0.174 13.505
Accidents 0.119 0.284 0 1 0.087 0.283 0 1
Degree/Higher degree 0.104 0.443 0 1 0.095 0.293 0 1
HND/A-Level 0.268 0.443 0 1 0.191 0.393 0 1
O-Level/ CSE 0.304 0.460 0 1 0.344 0.475 0 1
No Qualifications 0.324 0.468 0 1 0.371 0.483 0 1
White 0.970 0.170 0 1 0.987 0.111 0 1
Non-White 0.030 0.170 0 1 0.013 0.111 0 1
South East 0.149 0.356 0 1 0.148 0.355 0 1
South West 0.068 0.253 0 1 0.062 0.240 0 1
London 0.074 0.261 0 1 0.067 0.250 0 1
Midlands 0.193 0.395 0 1 0.169 0.375 0 1
Yorkshire 0.082 0.275 0 1 0.081 0.273 0 1
North West 0.091 0.288 0 1 0.094 0.292 0 1
North East 0.045 0.207 0 1 0.054 0.225 0 1
Scotland 0.133 0.340 0 1 0.149 0.356 0 1
Wales 0.110 0.313 0 1 0.111 0.314 0 1
Northern Ireland 0.054 0.227 0 1 0.066 0.248 0 1

Table 1: Descriptive statistics. Sample based on Smoking equations (NT = 18407 for men and NT
= 21915 for women, except for the health variable (NT = 17918 for men and NT = 21429 for women
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Health OLS Within System GMM
MA(3) MA(0) MA(0)

(1) (2) (3) (4) (5)

Hit�1 0.412 (0.000) 0.122 (0.000) 0.510 (0.014) 0.367 (0.000) 0.372 (0.000)
Hit�2 0.177 (0.000) -0.001 (0.918) 0.340 (0.093) 0.133 (0.000) 0.132 (0.000)
Hit�3 0.140 (0.000) -0.007 (0.573) 0.226 (0.178) 0.087 (0.002) 0.088 (0.001)
Hit�4 0.104 (0.000) -0.040 (0.000) -0.062 (0.104) 0.043 (0.220) 0.051 (0.128)
Xit Y Y Y Y Y
Xit�1 Y Y Y Y N
Xit�2 Y Y Y Y N
Xit�3 Y Y Y Y N
Wi Y N Y Y Y
Years Y Y Y Y Y
NT (N) 14635 (2315) 14635 (2315) 14635 (2315) 14635 (2315) 14635 (2315)
Sargan test 22.7[31] (0.858) 52.0[45] (0.220) 51.4[45] (0.238)
Serial Corr:
Order (1) -2.22 (0.026) -20.2 (0.000) -20.42 (0.000)
Order (2) -0.29 (0.771) 0.30 (0.763) 0.32 (0.749)
Order (3) -0.67 (0.502)
Order (4) 1.25 (0.210)
Order (5) 1.20 (0.229)
Lags: (5 6) (2 4) (2 4)

Smoking OLS Within System GMM
MA(3) MA(0) MA(0)

Sit�1 0.540 (0.000) 0.296 (0.000) 0.360 (0.087) 0.509 (0.000) 0.504 (0.000)
Sit�2 0.181 (0.000) 0.063 (0.000) 0.461 (0.003) 0.143 (0.000) 0.142 (0.000)
Sit�3 0.093 (0.000) 0.011 (0.327) -0.046 (0.775) 0.067 (0.000) 0.066 (0.000)
Sit�4 0.066 (0.000) -0.023 (0.024) 0.034 (0.405) 0.016 (0.231) 0.016 (0.250)
Xit Y Y Y Y Y
Xit�1 Y Y Y Y N
Xit�2 Y Y Y Y N
Xit�3 Y Y Y Y N
Wi Y N Y Y Y
Years Y Y Y Y Y
NT (N) 18407 (2864) 18407 (2864) 18407 (2864) 18407 (2864) 18407 (2864)
Sargan test 34.7[45] (0.867) 76.7[62] (0.099) 74.7[62] (0.130)
Serial Corr:
Order (1) -2.18 (0.029) -20.78 (0.000) -20.74 (0.000)
Order (2) -2.94 (0.003) 1.07 (0.283) 0.92 (0.359)
Order (3) 1.29 (0.198)
Order (4) -0.29 (0.771)
Order (5) 0.64 (0.519)
Lags: (5 7) (2 5) (2 5)

Table 2: Men: Fourth-order single equation estimates. Coe�cient estimates and p-values in paren-
theses. The Sargan test reports the statistic, degrees of freedom [ ] and associated p-value ( ). Tests
for serial correlation in first-di↵erenced errors report the test statistic and p-value ( ). Lags reports
the lag structure used to construct instruments for the model in first-di↵erened form. Two-step
robust standard errors are used (Windmeijer, 2005).
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Health OLS Within System GMM
MA(3) MA(0) MA(0)

(1) (2) (3) (4) (5)

Hit�1 0.407 (0.000) 0.119 (0.000) 0.403 (0.009) 0.341 (0.000) 0.355 (0.000)
Hit�2 0.200 (0.000) 0.015 (0.144) 0.205 (0.160) 0.158 (0.000) 0.164 (0.000)
Hit�3 0.131 (0.000) -0.015 (0.124) 0.131 (0.335) 0.070 (0.000) 0.074 (0.000)
Hit�4 0.125 (0.000) -0.021 (0.034) 0.023 (0.358) 0.051 (0.001) 0.055 (0.000)
Xit Y Y Y Y Y
Xit�1 Y Y Y Y N
Xit�2 Y Y Y Y N
Xit�3 Y Y Y Y N
Wi Y N Y Y Y
Years Y Y Y Y Y
NT (N) 17674 (2701) 17674 (2701) 17674 (2701) 17674 (2701) 17674 (2701)
Sargan test 48.3[50] (0.543) 80.2[68] (0.149) 79.0[68] (0.170)
Serial Corr:
Order (1) -4.11 (0.000) -25.03 (0.000) -25.01 (0.000)
Order (2) 0.10 (0.920) 0.16 (0.873) 0.05 (0.961)
Order (3) -0.41 (0.684)
Order (4) 0.60 (0.552)
Order (5) -0.40 (0.687)
Lags: (5 8) (2 6) (2 6)

Smoking OLS Within System GMM
MA(3) MA(0) MA(0)

Sit�1 0.520 (0.000) 0.265 (0.000) 0.171 (0.412) 0.457 (0.000) 0.458 (0.000)
Sit�2 0.198 (0.000) 0.075 (0.000) 0.488 (0.024) 0.159 (0.000) 0.159 (0.000)
Sit�3 0.098 (0.000) 0.012 (0.219) 0.077 (0.624) 0.060 (0.000) 0.060 (0.000)
Sit�4 0.078 (0.000) -0.010 (0.292) 0.003 (0.931) 0.034 (0.004) 0.037 (0.001)
Xit Y Y Y Y Y
Xit�1 Y Y Y Y N
Xit�2 Y Y Y Y N
Xit�3 Y Y Y Y N
Wi Y N Y Y Y
Years Y Y Y Y Y
NT (N) 21915 (3340) 21915 (3340) 21915 (3340) 21915 (3340) 21915 (3340)
Sargan test 24.4[34] (0.887) 63.4[74] (0.804) 62.0[74] (0.838)
Serial Corr:
Order (1) -1.95 (0.052) -21.98 (0.000) -22.13 (0.000)
Order (2) -2.42 (0.016) -0.95 (0.344) -0.96 (0.339)
Order (3) 0.46 (0.644)
Order (4) 0.38 (0.707)
Order (5) 1.17 (0.240)
Lags: (5 8) (2 6) (2 6)

Table 3: Women: Fourth-order single equation estimates. Coe�cient estimates and p-values in
parentheses. The Sargan test reports the statistic, degrees of freedom [ ] and associated p-value
( ). Tests for serial correlation in first-di↵erenced errors report the test statistic and p-value ( ).
Lags reports the lag structure used to construct instruments for the model in first-di↵erened form.
Two-step robust standard errors are used (Windmeijer, 2005).
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Men Women
Health Smoking Health Smoking

NT = 14635 NT = 18407 NT = 17674 NT = 21915

Yit�1 0.372 (0.000) 0.504 (0.000) 0.355 (0.000) 0.458 (0.000)
Yit�2 0.132 (0.000) 0.142 (0.000) 0.164 (0.000) 0.159 (0.000)
Yit�3 0.088 (0.001) 0.066 (0.000) 0.074 (0.000) 0.060 (0.000)
Yit�4 0.051 (0.128) 0.016 (0.250) 0.055 (0.000) 0.037 (0.001)
Age -0.0005 (0.607) -0.015 (0.518) 0.001 (0.445) -0.033 (0.085)
Age squared -0.00005 (0.959) 0.014 (0.494) -0.001 (0.086) 0.005 (0.757)
Married/Co-habiting 0.004 (0.127) -0.137 (0.078) 0.003 (0.204) -0.121 (0.021)
Household Size 0.002 (0.126) -0.016 (0.567) -0.0002 (0.833) 0.014 (0.485)
Number of Children 0.0002 (0.911) 0.031 (0.532) -0.0004 (0.843) 0.158 (0.000)
Unemployed -0.00008 (0.981) -0.189 (0.022) -0.002 (0.531) -0.032 (0.629)
Self Employed -0.003 (0.389) 0.001 (0.986) -0.004 (0.387) 0.162 (0.077)
Retired -0.003 (0.499) -0.078 (0.481) -0.0008 (0.788) -0.032 (0.629)
Employment other -0.009 (0.055) -0.161 (0.100) 0.001 (0.647) -0.068 (0.107)
Long-term sick -0.002 (0.739) 0.094 (0.482) 0.005 (0.340) -0.050 (0.537)
Household Income 0.005 (0.001) 0.028 (0.337) 0.002 (0.146) -0.002 (0.915)
Accidents 0.003 (0.027) -0.023 (0.537) 0.004 (0.035) 0.040 (0.218)
Degree/Higher degree 0.0002 (0.984) -0.328 (0.297) 0.011 (0.518) -0.913 (0.006)
HND/A-Level -0.00007 (0.994) -0.091 (0.711) 0.010 (0.507) -0.707 (0.016)
O-Level/ CSE -0.002 (0.846) -0.070 (0.778) 0.009 (0.516) -0.650 (0.014)
Non-White -0.006 (0.177) -0.042 (0.727) -0.003 (0.660) -0.325 (0.011)
South West 0.005 (0.093) -0.022 (0.772) 0.002 (0.406) -0.014 (0.825)
London 0.002 (0.414) 0.067 (0.362) 0.0004 (0.904) 0.082 (0.276)
Midlands 0.0005 (0.823) -0.031 (0.630) -0.005 (0.117) 0.0003 (0.996)
Yorkshire -0.002 (0.432) -0.033 (0.610) -0.006 (0.091) 0.073 (0.238)
North West -0.0005 (0.817) -0.003 (0.956) -0.003 (0.238) 0.162 (0.014)
North East -0.004 (0.196) 0.048 (0.549) -0.011 (0.005) 0.168 (0.017)
Scotland -0.002 (0.406) 0.217 (0.000) -0.007 (0.009) 0.242 (0.000)
Wales -0.001 (0.589) 0.179 (0.003) -0.011 (0.004) 0.146 (0.017)
Northern Ireland -0.003 (0.614) 0.236 (0.018) -0.006 (0.342) 0.051 (0.630)

Table 4: Fourth-order single equation estimates. Coe�cient estimates and p-values in parenthe-
ses. Yit�1, . . . , Yit�4 = Hit�1, . . . , Hit�4 for the health equation and Sit�1, . . . , Sit�4 for the smoking
equation. All regressions include year dummies.
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8 Appendix A

Consider the four by four system of equations for H, S, A and M and where
X is exogenous.

Ht = #0 + #1Ht�1 + #2St�1 + #3At�1 + #4Mt�1 + #5Xt + ⌘ht
St = ↵0 + ↵1Ht�1 + ↵2St�1 + ↵3At�1 + ↵4Mt�1 + ↵5Xt + ⌘st
At = �0 + �1Ht�1 + �2St�1 + �3At�1 + �4Mt�1 + �5Xt + ⌘at
Mt = !0 + !1Ht�1 + !2St�1 + !3At�1 + !4Mt�1 + !5Xt + ⌘mt (13)

Using the lag operator, such that LHt = Ht�1 etc., and grouping yields:
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�!1L �!2L !3L (1� !4L)

1

CCA

�1 0

BB@

#0 + #5Xt + ⌘Ht
↵0 + ↵5Xt + ⌘St
�0 + �5Xt + ⌘At
!0 + !5Xt + ⌘Mt

1

CCA

Solving for the inverse of the matrix in the expression above requires us to
find the determinant (of the fourth order). This is given as:

�1 + [#1 + ↵2 � �3 + !4]L
+ [#2↵1 � #1↵2 � #3�1 � ↵3�2 + #1�3 + ↵2�3 + #4!1 + ↵4!2 � �4!3 � #1!4

�↵2!4 + �3!4]L2

+ [#3↵2�1 � #2↵3�1 � #3↵1�2 + #1↵3�2 + #2↵1�3 � #1↵2�3 � #4↵2!1 + #2↵4!1

+#4�3!1 � #3�4!1 + #4↵1!2 � #1↵4!2 + ↵4�3!2 � ↵3�4!2 � #4�1!3 � ↵4�2!3

+#1�4!3 + ↵2�4!3 � #2↵1!4 ++#1↵2!4 + #3�1!4 + ↵3�2!4 � #1�3!4 � ↵2�3!4]L3

+ [#4↵3�2!1 � #3↵4�2!1 � #4↵2�3!1 + #2↵4�3!1 + #3↵2�4!1 � #2↵3�4!1

�#4↵3�1!2 + #3↵4�1!2 + #4↵4�1!2 + #4↵1�3!2 � #1↵4�3!2 � #3↵1�4!2

+#1↵3�4!2 + #4↵2�1!3 � #2↵4�1!3 + #4↵1�2!3 + #1↵4�2!3 + #2↵1�4!3

�#1↵2�4!3 � #3↵2�1!4 + #2↵3�1!4 + #3↵1�2!4 � #1↵3�2!4 � #2↵1�3!4

+#1↵2�3!4]L4

When applied to each of the variables, Ht, St, At or Mt on the left hand
side of the expression being reduced yields a fourth order di↵erence equation
in that variable.

The adjoint matrix has the following form:
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Row 1:

�1 + [↵2 � �3 + !4]L+ [↵2�3 + ↵4!2 � ↵3�2 � �4!3 � ↵2!4]L2

+ [↵4�3!2 � ↵3�4!2 � ↵4�2!3 + ↵2�4!3 + ↵3�2!4 � ↵2L�3L!4L]L3,
�#2L+ [#3�2 � #2�3 � #4!2 + #2!4]L2 + [#3�4!2 � #4�3!2 + #4�2!3

�#2�4!3 + #3�2!4 + #2�3!4]L3,
#3L+ [#2↵3 � #3↵2 + #4!3 � #1!4]L2 + [#4↵3!2 � #3↵4!2 � #4↵2!3

+#2↵4!3 + #3↵2!4 � #2↵3!4]L3,
�#4L+ [#3�4 + #4↵2 � #2↵4 � #4�3]L2 + [#3↵4�2 � #4↵3!2 + #4↵2�3
�#2↵4�3 � #3↵2!4 + #2↵3�4]L3.

Row 2:

�↵1L+ [↵3�1 � ↵1�3 � ↵4!1 + ↵1!4]L2

+ [↵3�4!1 + ↵4�1!3 � ↵1�4!3 � ↵3�1!4 + ↵1�3!4 + ↵3�3!1]L3,
�1 + [#1 � �3 + !4]L+ [#1�3 + #4!1 � #3!1 � �4!3 � #1!4 + �3!4]L2

+ [#4�3!1 � #3�4!1 � #4�1!3 + #1�4!3 + #3�1!4 � #1�3!4]L3,
↵3L+ [#3↵2 � #1↵3 + ↵4!3 � ↵3!4]L2 + [#3↵4!1 + #4↵1!3 � #1↵4!3

�#3↵1!4 + #1↵3!4 � #4↵3!1]L3,
�↵4L+ [#1↵4 � #4↵1 � ↵4�3 + ↵3�4]L2 + [#4↵3�1 � #3↵4!1 � #4↵1�3
+#1↵4�3 + #3↵1!4 � #1↵3�4]L3.

Row 3:

�1L+ [↵1�2 � ↵2!1 + �4!1 � �1!4]L2

+ [↵4�2!1 � ↵2�4!1 � ↵4�1!2 + ↵1�4!2 + ↵2�1!4 � ↵1�2!4]L3,
�2L+ [#2�1 � #1�2 + �4!2 � �2!4]L2 + [#4�1!2 � #4�2!1 + #2�4!1

�#1�4!2 � #2�1!4 + #1�2!4]L3,
1� [#1 + ↵2 + !4]L+ [#1↵2 + #4!1 � #2↵1 � ↵4!2 + #1!4 + ↵2!4]L2

+ [#4↵2!1 � #2↵4!1 � #4↵1!2 + #1↵4!2 + #2↵1!4 � #1↵2!4]L3,
#4L+ [#4�1 + ↵4�2 � #1�4 � ↵2�4]L2 + [#2↵4�1 � #4↵2�1 + #4↵1�2
�#1↵4�2 � #2↵1�4 + #1↵2�4]L3.

Row 4:

�!1L+ [↵2�1 � �3!1 � ↵1!2 + �1!3]L2

+ [↵2�3!1 + ↵3�1!2 � ↵1�3!2 � ↵2�1!3 + ↵1L�2L!3L� ↵3L�2L!1]L3,
�!2L+ [#1!2 � #2!1 + �3!2 + �2!3]L2 + [#3�2!1 � #2�3!1 + #3�1!2

+#1�3!2 + #2�1!2 � #1�2!3]L3,
!3L+ [#3!1 + ↵3!2 � #1!3 � ↵2!3]L2

+ [#2↵3!1 � #3↵2!1 + #3↵1!2 � #1↵3!2 � #2↵1!3 � #1↵2!3]L3,
�1 + [#1 � �3 + ↵2]L+ [#2↵1 � #1↵2 � #3�1 � ↵3�2 + ↵2�3 + #1�3]L2

+ [#3↵2�1 � #2↵3�1 � #3↵1�2 + #1↵3�2 + #2↵1�3 � #1↵2�3]L3.

The highest lag (L) on the right-hand-side is 4th order in S. From the
adjoint matrix we see that the highest lag of the X 0s and ✏ is order 3.
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9 Appendix B

Instrument set for single fourth-order equation in first-di↵erenced form

0

BBBBB@

Si1 0 0 . . . . . . 0 . . . . . . 0 �Xi6 �Xi5 �Xi4 �Xi3

0 Si1 Si2 . . . . . . 0 . . . . . . 0 �Xi7 �Xi6 �Xi5 �Xi4
...

...
...

. . .
...

. . .
...

...
...

...
...

...
...

...
. . .

...
. . .

...
...

...
...

...
0 0 0 . . . . . . Si1 . . . . . . SiT�5 �XiT �XiT�1 �XiT�2 �XiT�3

1

CCCCCA
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